Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* n = 3k
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7
* n = 3k+1
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1
* n = 3k+2
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3
Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương)
n . ( n + 2 ) . ( n + 7 )
= n . n . n ( 2 + 7 )
= n3 ( 2 + 7 )
= n3 . 9
Vì n3 bắt buộc phải chia hết cho 3 và 9 chia hết cho 3
=> n . ( n + 2 ) . ( n + 7 ) sẽ chia hết cho 3 với mọi số tự nhiên
n.(n+2).(n+7)
=n.n.n.(2+7)
=n^3.(2+7)
=2^3.9
n^3 chia hết cho 3;9 nên n.(n+2).(2+7) xẽ chia hết cho 3 với mọi số tự nhiên
xét n=3k=>n(n+2)(n+7) chia hết cho 3(1)
xét n=3k+1=>n+2=3k+3=3(k+1)
=>n(n+2)(n+7) chia hết cho 3(2)
xét n=3k+2=>n+7=3k+9=3(k+3)
=>n(n+2)(n+7) chia hết cho 3(3)
từ (1);(2);(3)=>n(n+2)(n+7) chia hết cho 3
=>đpcm
\(A=7+7^2+7^3+7^4+.............+7^{4n}\)
\(\Leftrightarrow A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+........+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)+........+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(\Leftrightarrow A=7.400+7^5.400+...........+7^{4n-3}.400\)
\(\Leftrightarrow A=400\left(7+7^5+........+7^{4n-3}\right)⋮400\left(đpcm\right)\)