K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

 * n = 3k 
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7 

* n = 3k+1 
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1 

* n = 3k+2 
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3 

Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương) 

11 tháng 2 2018

câu thứ 2 đợi mình nghĩ đã nhé.

29 tháng 3 2016

A=(7+7^2+7^3+7^4)+(7^5+7^6+7^7+7^8)+........+(7^4n-3 +7^4n-2 +7^4n-1 +7^4n)

A=7.(1+7+7^2+7^3)+7^5(1+7+7^2+7^3)+..........+7^4n-3.(1+7+7^2+7^3)

A=7.400+7^5.400+.......7^4n-3.400

Vậy A chia hết cho 400

2 tháng 1 2017

n . ( n + 2 ) . ( n + 7 )

= n . n . n ( 2 + 7 )

= n3 ( 2 + 7 )

= n3 . 9 

Vì n3 bắt buộc phải chia hết cho 3 và 9 chia hết cho 3

=> n . ( n + 2 ) . ( n + 7 ) sẽ chia hết cho 3 với mọi số tự nhiên

19 tháng 10 2018

n.(n+2).(n+7)

=n.n.n.(2+7)

=n^3.(2+7)

=2^3.9

n^3 chia hết cho 3;9 nên n.(n+2).(2+7) xẽ chia hết cho 3 với mọi số tự nhiên

xét n=3k=>n(n+2)(n+7) chia hết cho 3(1)

xét n=3k+1=>n+2=3k+3=3(k+1)

=>n(n+2)(n+7) chia hết cho 3(2)

xét n=3k+2=>n+7=3k+9=3(k+3)

=>n(n+2)(n+7) chia hết cho 3(3)

từ (1);(2);(3)=>n(n+2)(n+7) chia hết cho 3

=>đpcm

 

31 tháng 12 2017

\(A=7+7^2+7^3+7^4+.............+7^{4n}\)

\(\Leftrightarrow A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+........+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)+........+7^{4n-3}\left(1+7+7^2+7^3\right)\)

\(\Leftrightarrow A=7.400+7^5.400+...........+7^{4n-3}.400\)

\(\Leftrightarrow A=400\left(7+7^5+........+7^{4n-3}\right)⋮400\left(đpcm\right)\)

31 tháng 12 2017

Hỏi đáp Toán

2 tháng 1 2017

n . ( n + 2 ) . ( n + 7 ) 

= n . n . n . ( 2 + 7 )

= n3 . 9 

Ta thấy 9 chia hết cho 3

n3 chắc chắn phải chia hết cho 3

=> Biểu thức trên chia hết cho 3 với mọi số tự nhiên