Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{\left(b+c\right)^2+a^2-2a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{\left(a+c\right)^2+b^2-2b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{\left(b+a\right)^2+c^2-2c\left(a+b\right)}{\left(a+b\right)^2+c^2}\ge\frac{3}{5}\)
\(\Leftrightarrow3-2\left(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\right)\ge\frac{3}{5}\)
\(\Leftrightarrow\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)
Chuẩn hóa \(a+b+c=3\) (hay đặt \(x=\frac{3a}{a+b+c};y=\frac{3b}{a+b+c};z=\frac{3c}{a+b+c}\))
BĐT cần chứng minh trở thành:
\(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}+\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}+\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{6}{5}\)
Ta có đánh giá: \(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}\le\frac{9a+1}{25}\) ; \(\forall a\in\left(0;3\right)\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\) (luôn đúng)
Tương tự: \(\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}\le\frac{9b+1}{25};\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{9c+1}{25}\)
Cộng vế với vế: \(VT\le\frac{9\left(a+b+c\right)+3}{25}=\frac{30}{25}=\frac{6}{5}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Không mất tính tổng quát ta giả sử: \(a\ge b\ge c\ge0\)
Đầu tiên ta chứng minh
\(\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)^2\left(b+c-a\right)+\left(c-a\right)^2\left(c+a-b\right)\ge0\left(1\right)\)
Ta xét 2 trường hợp:
TH 1: \(b+c\le a\)
\(\Leftrightarrow\hept{\begin{cases}a-c\ge b-c\\a+c-b\ge b+c-a\end{cases}}\)
\(\Rightarrow\left(a-c\right)^2\left(a+c-b\right)\ge\left(b-c\right)^2\left(b+c-a\right)\)
\(\Rightarrow\left(1\right)\)đúng
TH 2: \(a+b-c\ge a+c-b\ge b+c-a\ge0\) thì (1) đúng.
\(\Rightarrow\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)^2\left(b+c-a\right)+\left(c-a\right)^2\left(c+a-b\right)\ge0\)
\(\Leftrightarrow a^3+b^3+c^3-a^2b-a^2c-b^2a-b^2c-c^2a-c^2b+3abc\ge0\)
\(\Leftrightarrow3abc\ge\left(a^2b+a^2c-a^3\right)+\left(b^2a+b^2c-b^3\right)+\left(c^2a+c^2b-c^3\right)\)
\(\Leftrightarrow a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\left(a+b-c\right)\le3abc\)
Đặt vế trái là P
\(P=\sum\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}\ge\sum\frac{2\left(b+c-a\right)^2}{2a^2+2\left(b^2+c^2\right)}=\frac{\left(b+c-a\right)^2+\left(c+a-b\right)^2+\left(a+b-c\right)^2}{a^2+b^2+c^2}\)
\(P\ge\frac{3\left(a^2+b^2+c^2\right)-2ab-2ac-2bc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{a^2+b^2+c^2}\)
\(P\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Nhân tung tóe + rút gọn ta được: \(\Sigma_{cyc}a^3b^2+\Sigma_{cyc}ab^3\ge abc\left(ab+bc+ca+a+b+c\right)\)
\(\Leftrightarrow\)\(\Sigma\frac{a^2b}{c}+\Sigma\frac{a^2}{b}\ge ab+bc+ca+a+b+c\) (*)
(*) đúng do \(\hept{\begin{cases}\frac{a^2b}{c}+bc\ge2ab\\\frac{a^2}{b}+b\ge2a\end{cases}}\Rightarrow\hept{\begin{cases}\Sigma\frac{a^2b}{c}\ge ab+bc+ca\\\Sigma\frac{a^2}{b}\ge a+b+c\end{cases}}\)
"=" \(\Leftrightarrow\)\(a=b=c\)
Vì vai trò của a,b,c là như nhau , nên có thể giả thiết \(a\ge b>c>0.\)
Có thể thấy rằng phải chứng minh : \(B\ge0,\)với
\(B=3abc+a^3+b^3+c^3-a^2b-b^2a-a^2c-b^2c-c^2a-c^2b\)
\(=a^2\left(a-b\right)+b^2\left(b-a\right)+c\left(2ab-a^2-b^2\right)+c\left(c^2-bc-ac+ab\right)\)
\(=\left(a-b\right)\left(a^2-b^2\right)-c\left(a-b\right)^2+c\left(c-a\right)\left(c-b\right)\)
\(=\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)\left(a-c\right)\)
Do giả thiết \(a\ge b\ge c,c>0\)
\(\RightarrowĐPCM\)