K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

có \(a^2=bc=>a.a=bc=>\frac{a}{c}=\frac{b}{a}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}=>đpcm\)

23 tháng 9 2017

a2 = b.c => a.a = b.c = \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}\)điều cần minh chứng

9 tháng 8 2016

\(a.\)\(\frac{a}{b}=\frac{c}{d}\)=>   \(ad=bc\)=>   \(ad+ab=bc+ab\)=> a x ( b + d) = b x ( a + c )

=>  \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)

\(b.\)\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)=>  \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)( Áp dụng tính chất dãy tỉ số bằng nhau )

=>\(\frac{a}{b}=\frac{c}{a}\)=>  \(a^2=bc\)( đpcm)

10 tháng 11 2016

em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122

7 tháng 1 2018

Ta có :

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )

TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)

TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )

\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )

Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)

Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

25 tháng 1 2019

Ta có : \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{a-c}{\left(a-b\right)\left(a-c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)}\)

\(=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)

Tương tự ta cũng chứng minh được :

\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\left(3\right)\end{cases}}\)

Từ (1), (2), (3), suy ra : \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(đpcm\right)\)

25 tháng 1 2019

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{c-a+a-b}{\left(a-b\right)\left(c-a\right)}\)=\(\frac{1}{a-b}+\frac{1}{c-a}\)

Tuong tu => DPCM

12 tháng 7 2016

Ta có: \(a^2=bc\)

=> \(bc-a^2=a^2-bc\)

<=> \(bc-a^2+ac-ab=a^2-bc+ac-ab\)

<=> \(\left(ac-a^2\right)+\left(bc-ab\right)=\left(a^2-ab\right)+\left(ac-bc\right)\)

<=> \(a\left(c-a\right)+b\left(c-a\right)=a\left(a-b\right)+c\left(a-b\right)\)

<=> \(\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\)

<=> \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)(đpcm)

26 tháng 10 2017

TA CÓ \(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{am}{bm}=\frac{nc}{nd}=\frac{ep}{eq}\)

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ 

\(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{ma}{mb}=\frac{nc}{nd}=\frac{ep}{eq}=\frac{ma+nc+ep}{mb+nd+eq}\)(ĐPCM)

24 tháng 10 2017

ADTC dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\cdot1=b\\b=c\cdot1=c\\c=a\cdot1=a\end{cases}\Leftrightarrow a=b=c}\)

2 tháng 8 2017

a) a2 = bc

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

b) a2 = bc

\(\Rightarrow\frac{a}{b}=\frac{c}{a}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{a^2}=\frac{a}{b}.\frac{c}{a}=\frac{c}{b}\)

\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)

18 tháng 2 2016

a) b,c=1

còn lại chịu

5 tháng 2 2021

a, Thay a=1 ta có hệ phương trình:

       1+\(\)1/b=c+\(\)1/1

       Và 1+1/b=b+1/c

<=>c=1/b

      Và1+1/b=b+1/1/b

Giải hệ này ta tìm được b=-1/2 và c=-2

 

 

 

 

 

2 tháng 6 2016

Cách 1:Đặt \(\frac{a}{b}=\frac{c}{d}=k;\Rightarrow a=bk,c=dk\Leftrightarrow\)

\(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(\frac{c}{d}=\frac{dk}{d}=k\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

2 tháng 6 2016

Cách 2:Đặt: a/b = c/d = k => a = bk, c = dk 

Ta có: 

a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1) 

c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2) 

Từ (1) và (2) => a+b/a-b = c+d/c-d 

2 tháng 10 2019

a/2a+b/2b+c/2c=1/2+1/2+1/2=3/2