Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d=\left(21a+4,14a+3\right)\Rightarrow\hept{\begin{cases}21a+4⋮d\\14a+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42a+8⋮d\\42a+9⋮d\end{cases}}\Rightarrow\left(42a+9\right)-\left(42a+8\right)=1⋮d\Rightarrow d=1\)
\(\Rightarrow\text{đ}cpm\)
Gọi \(\left(21n+4;14n+3\right)=d\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2.\left(21n+4\right)⋮d\\3.\left(14n+3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n là số tự nhiên
k đúng cho mình với:
gọi d là Ư(21n+4;14n+3)
=>21n+4 và 14n+3 chia hết cho d
=>42n+8 và 42n+9 chia hết cho d
=>42n+9-42n+8 chia hết cho d
=>1 chia hết cho d
=>d thuộc ước của 1
=>d thuộc -1 và 1
=>21n+1/14n+3 là phân số tối giản
Gọi d là ƯCLN(21n + 4;14n + 3) nên ta có :
21n + 4 ⋮ d và 14n + 3 ⋮ d
<=> 2(21n + 4) ⋮ d và 3(14n + 3) ⋮ d
<=> 42n + 8 ⋮ d và 42n + 9 ⋮ d
=> (42n + 9) - (42n + 8) ⋮ d
=> 1 ⋮ d => d = 1
=> \(\frac{21n+4}{14n+3}\) là phân số tối giản ( đpcm )
gọi d là UCLN (21n+4;14n+3)
ta có:
[3(14n+3]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1
=>phân số trên tối giản vs mọi n
) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d
=> (14n+3) -(21n+4) ⋮⋮d
=> 3(14n+3) -2(21n+4) ⋮⋮d
=> 42n+9 - 42n -8 ⋮⋮d
=> 1⋮⋮d
=> 21n+4/14n+3 là phân số tối giản
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
gọi UCLN( 14n +3 , 21n +4 ) =d (1)
=> 21n+4 và 14n+3 chia hết cho d => 21n+4 - 14n-3 chia hết cho d
=> 7n+1 chia hết cho d =>( 7n+1 ). 2 chia hết cho d => 14n +2 chia hết cho d
=> 14n+ 3 - 14n - 2 chia hết cho d =>1 chia hết cho d => d thuộc ước của 1 (2)
từ (1) ,(2) => dpcm
Gọi UCLN(14n+3,21n+4) =a
ta có :14n+3 chia hết cho a ; 21n+4 chia hết cho a
suy ra (21n+4) : 3 .2 chia hết cho a và 14n+3 chia hết cho a
suy ra 14n+2 chia hết cho a và 14n+3 chia hết cho a
suy ra (14n+3) - (14n+2) chia hết cho a
suy ra 14n+3 - 14n-2 chia hết cho a
suy ra 1 chia hết cho a
và a thuộc U(1) = 1
Vậy 14n+3/14n+4 là phân số tối giản
chúc bạn học tốt
Đặt \(A=\frac{21n+4}{14n+3}\)
Ta có : 14n + 3 \(\ne\) 0 với mọi n \(\in\) N => A luôn là phân số với mọi n \(\in\) N
Gọi d = ƯCLN(21n + 4;14n + 3)
=> 21n + 4 chia hết cho d (1) và 14n +3 chia hết cho d (2)
Từ (1) và (2) suy ra 21n + 4 – (14n + 3) = 7n + 1 chia hết cho d (3)
Từ (1) và (3) suy ra
21n + 4 chia hết cho d ; 7n + 1 chia hết cho d <=> 21n +4 chia hết cho d ; 21n +3 chia hết cho d
=> 21n + 4 – (21n + 3) chia hết cho d => 1 chia hết cho d => d = 1 => ĐPCM