K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)

\(M+4=\left(\dfrac{x}{x+y+z}+1\right)+\left(\dfrac{y}{x+y+t}+1\right)+\left(\dfrac{z}{y+z+t}+1\right)+\left(\dfrac{t}{x+z+t}+1\right)\)\(M+4=\dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}\)\(M+4=\dfrac{x+t+y+z+z+x+t+y}{x+y+z+t}\)

\(M+4=\dfrac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(M+4=2\)

\(M=2-4=-2\notin N\)

Ta có đpcm

14 tháng 3 2018

Tuy không hoàn toàn giống nhưng bạn tham khảo rồi chứng minh tương tự nhé !

https://hoc24.vn/hoi-dap/question/459079.html

28 tháng 10 2017

\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)

Ta có:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}>\dfrac{x}{x+y+z+t}\\\dfrac{y}{x+y+t}>\dfrac{y}{x+y+z+t}\\\dfrac{z}{y+z+t}>\dfrac{z}{x+y+z+t}\\\dfrac{t}{x+z+t}>\dfrac{t}{x+y+z+t}\end{matrix}\right.\) Cộng theo \(3\) vế ta có:

\(M>\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\)

Lại có:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}< \dfrac{x+t}{x+y+z+t}\\\dfrac{y}{x+y+t}< \dfrac{y+z}{x+y+z+t}\\\dfrac{z}{y+z+t}< \dfrac{z+x}{x+y+z+t}\\\dfrac{t}{x+z+t}< \dfrac{t+y}{x+y+z+t}\end{matrix}\right.\)Cộng theo \(3\) vế ta có:

\(M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}=2\)Như vậy \(1< M< 2\Leftrightarrow M\notin N\left(đpcm\right)\)

23 tháng 3 2018

\(M=\dfrac{x}{x+y+z}=\dfrac{y}{x+y+t}=\dfrac{z}{y+z+t}=\dfrac{z}{x+z+t}\)\(\dfrac{x}{x+y+z}< 1\Rightarrow\dfrac{x+t}{x+y+z+t}>\dfrac{x}{x+y+z}\)

\(Tương\)\(tự\):\(\Rightarrow M< \dfrac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(Ta\) \(có\):\(2>M>1\)

\(\Rightarrow M\notin N\)\(sao\)

12 tháng 9 2023

Từ gt của đề bài :

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{z+t+x}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\text{=}\dfrac{x+y+z+t}{3.\left(x+y+z+t\right)}\left(\cdot\right)\)

Xét TH : \(x+y+z+t\text{=}0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z\text{=}-\left(x+t\right)\\z+t\text{=}-\left(x+y\right)\\x+t\text{=}-\left(y+z\right)\end{matrix}\right.\)

Do đó : \(P\text{=}-1+-1+-1+-1\)

\(P\text{=}-4\in Z\)

TH : \(x+y+z+t\ne0\)

\(\Rightarrow\left(\cdot\right)\text{=}\dfrac{1}{3}\)

Do đó : \(\dfrac{x}{y+z+t}\text{=}\dfrac{1}{3}\Rightarrow3x\text{=}y+z+t\)

\(\Rightarrow4x\text{=}x+y+z+t\)

\(CMTT:\left\{{}\begin{matrix}4y\text{=}x+y+z+t\\4z\text{=}x+y+z+t\\4t\text{=}x+y+z+t\end{matrix}\right.\)

Mà : \(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{x+z+t}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\)

\(\Rightarrow4x\text{=}4y\text{=}4z\text{=}4t\)

\(\Rightarrow x\text{=}y\text{=}z\text{=}t\)

Do đó : \(P\text{=}4\in Z\)

\(\Rightarrowđpcm\)

 

12 tháng 9 2023

Kham khảo :

https://olm.vn/cau-hoi/cho-cac-so-thuc-xyzt-thoa-mandfracxyztdfracyztxdfracztxydfractxyz-cmr-p-dfracxyztdfracyztx.8377111224063.

Bạn vuốt xuống dưới để xem đáp án nha.

24 tháng 10 2018

\(M>\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\)

\(\dfrac{a}{b}< 1\Rightarrow\) \(\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (Bạn chứng minh qua nhân chéo nhé)

\(\Rightarrow M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}=2\)

Do \(1< M< 2\)\(1\)\(2\) là hai số tự nhiên liên tiếp

\(\Rightarrow M\notin\) N

16 tháng 5 2017

CM: M>1

\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\\ >\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\left(\text{đ}pcm\right)\)

cm : M<2

\(M< \dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{z}{z+t}+\dfrac{t}{z+t}=1+1=2\left(\text{đ}pcm\right)\)

Vì 1<M<2 nên M không phải là số tự nhiên