Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đó là n
Ta có
n^3-7n=n^3-n-6n=n(n^2-1)-6n
=n(n-1)(n+1)-6n \(\left(1\right)\)
Do n,n-1,n+1 là 3 stn liên tiếp
=>n(n-1)(n+1) chia hết cho 6
6n chia hết cho 6
=> (1) chia hết cho 6
=>n^3-7n chia hết cho 6 ( dpcm )
Chứng minh rằng lập phương của một số nguyên n ( n>1) trừ đi 13 lần số nguyên đó luôn chia hết cho 6
Lời giải:
Xét biểu thức \(A=n^3-13n\). Ta cần cm \(A\vdots 6\)
Thật vậy: \(A=n^3-13n=n^3-n-12n=n(n^2-1)-12n\)
\(A=n(n-1)(n+1)-12n\)
Vì \(n,n-1\) là hai số tự nhiên liên tiếp nên tích \(n(n-1)\vdots 2\)
\(\Rightarrow n(n-1)(n+1)\vdots 3\)
Vì \(n-1,n,n+1\) là ba số tự nhiên liên tiếp nên tích \(n(n-1)(n+1)\vdots 3\)
Kết hợp với (2,3) nguyên tố cùng nhau, do đó: \(n(n-1)(n+1)\vdots 6\)
Mà \(12n\vdots 6\)
\(\Rightarrow A= n(n-1)(n+1)-12n\vdots 6\Leftrightarrow n^3-13n\vdots 6\)
Ta có đpcm.
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)
hay \(n\left(n-1\right)\left(n+1\right)⋮6\)
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
B=a^3-13a
=a^3-a-12a
=a(a-1)(a+1)-12a
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 6
=>B chia hết cho 6