\(\frac{1}{ma}+\frac{1}{mb}+\frac{1}{mc}\le\frac{1}{r}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

#)Bạn tham khảo nhé : 

https://diendan.hocmai.vn/threads/toan-lien-quan-toi-cong-thuc-duong-trung-tuyen-ne-i-lam-dk-thi-giup-nha-thi-giup-nha.165441/

20 tháng 6 2019

Anh ơi mấy bài toán lớp 9,10 này mình nên mang lên 

+Hoc.24.vn tham khảo để các anh chị giúp cho 

Hoặc mình link tương tự nhé 

9 tháng 2 2020

Bài này là dạng dễ đó

Ta có: \(\frac{MA'}{AA'}=\frac{S_{MA'B}}{S_{AA'B}}=\frac{S_{MA'C}}{S_{AA'C}}=\frac{S_{MA'B}+S_{MA'C}}{S_{AA'B}+S_{AA'C}}\)\(=\frac{S_{MBC}}{S_{ABC}}\)

Tương tự: \(\frac{MB'}{BB'}=\frac{S_{AMC}}{S_{ABC}}\);\(\frac{MC'}{CC'}=\frac{S_{AMB}}{S_{ABC}}\)

Suy ra: \(\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=\frac{S_{MBC}+S_{AMC}+S_{AMB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

⇒ điều phải chứng minh

NV
18 tháng 6 2020

\(\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{a}{2}-1\right)}}\)

\(=\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{\frac{1}{2}+cos^2\frac{a}{2}-\frac{1}{2}}}\)

\(=\sqrt{\frac{1}{2}-\frac{1}{2}\sqrt{cos^2\frac{a}{2}}}=\sqrt{\frac{1}{2}-\frac{1}{2}cos\frac{a}{2}}\)

\(=\sqrt{\frac{1}{2}-\frac{1}{2}\left(1-2sin^2\frac{a}{4}\right)}=\sqrt{\frac{1}{2}-\frac{1}{2}+sin^2\frac{a}{4}}\)

\(=\sqrt{sin^2\frac{a}{4}}=sin\frac{a}{4}\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2019

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{a+1}+\frac{2b}{b+1}+\frac{3c}{c+1}\leq 1(*)\)

\((*)\Rightarrow \frac{1}{a+1}=1-\frac{a}{a+1}\geq \frac{2b}{b+1}+\frac{3c}{c+1}=\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{b^2c^3}{(b+1)^2(c+1)^3}}(1)\)

\((*)\Rightarrow \frac{1}{b+1}=1-\frac{b}{b+1}\geq \frac{a}{a+1}+\frac{b}{b+1}+\frac{3c}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{abc^3}{(a+1)(b+1)(c+1)^3}}(2)\)

\((*)\Rightarrow \frac{1}{c+1}=1-\frac{c}{c+1}\geq \frac{a}{a+1}+\frac{2b}{b+1}+\frac{2c}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{c}{c+1}\geq 5\sqrt[5]{\frac{ab^2c^2}{(a+1)(b+1)^2(c+1)^2}}(3)\)

Lấy \((1).(2)^2.(3)^3\) rồi rút gọn ta suy ra \(ab^2c^3\leq \frac{1}{5^6}\)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{5}$