K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

#)Bạn tham khảo nhé : 

https://diendan.hocmai.vn/threads/toan-lien-quan-toi-cong-thuc-duong-trung-tuyen-ne-i-lam-dk-thi-giup-nha-thi-giup-nha.165441/

20 tháng 6 2019

Anh ơi mấy bài toán lớp 9,10 này mình nên mang lên 

+Hoc.24.vn tham khảo để các anh chị giúp cho 

Hoặc mình link tương tự nhé 

AH
Akai Haruma
Giáo viên
17 tháng 1 2017

Hình như bạn bị lỗi một chút. Để phải là: CM

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{\frac{2abc}{(a+b)(b+c)(c+a)}}\geq 2\)

Giải như sau:

Đặt \(\left ( \frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b} \right )=(x,y,z)\). Khi đó, ta thu được điều kiện sau:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1\Leftrightarrow xy+yz+xz+2xyz=1\)

Bài toán chuyển về CM \(x+y+z+\sqrt{2xyz}\geq 2\)\(\)

\(\Leftrightarrow x+y+z+\sqrt{1-(xy+yz+xz)}\geq 2\) \((\star)\)

Từ điều kiện $(1)$ , áp dụng BĐT Cauchy-Schwarz:

\(\left [ \frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1} \right ][x(x+1)+y(y+1)+z(z+1)]\geq (x+y+z)^2\)

\(\Rightarrow x(x+1)+y(y+1)+z(z+1)\geq (x+y+z)^2\)

\(\Rightarrow x+y+z\geq 2(xy+yz+xz)\) $(1)$

Ta sẽ chứng minh \(2(xy+yz+xz)+\sqrt{1-(xy+yz+xz)}\geq 2\)$(2)$

Thật vậy:

Theo Am-Gm: \(1=xy+yz+xz+2xyz\leq xy+yz+xz+2\sqrt{\frac{(xy+yz+xz)^3}{27}}\)

Đặt \(\sqrt{\frac{xy+yz+xz}{3}}=t\). Ta có

\(1\leq 3t^2+2t^3\Leftrightarrow (t+1)^2(2t-1)\geq 0\Rightarrow t\geq\frac{1}{2}\)

Khi đó \((1)\Leftrightarrow 6t^2+\sqrt{1-3t^2}\geq 2\Leftrightarrow (2t-1)(2t+1)(3t^2-1)\leq0\)

Điều này luôn đúng do \(t\geq \frac{1}{2}\)\(1>xy+yz+xz=3t^2\)

Do đó $(1)$ được CM.

Từ \((1),(2)\Rightarrow (\star)\) đúng, bài toán được hoàn thành.

Dấu $=$ xảy ra khi $x=y=z=\frac{1}{2}$, hay $a=b=c$

14 tháng 1 2020

@Akai Haruma

9 tháng 2 2020

Bài này là dạng dễ đó

Ta có: \(\frac{MA'}{AA'}=\frac{S_{MA'B}}{S_{AA'B}}=\frac{S_{MA'C}}{S_{AA'C}}=\frac{S_{MA'B}+S_{MA'C}}{S_{AA'B}+S_{AA'C}}\)\(=\frac{S_{MBC}}{S_{ABC}}\)

Tương tự: \(\frac{MB'}{BB'}=\frac{S_{AMC}}{S_{ABC}}\);\(\frac{MC'}{CC'}=\frac{S_{AMB}}{S_{ABC}}\)

Suy ra: \(\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=\frac{S_{MBC}+S_{AMC}+S_{AMB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

⇒ điều phải chứng minh

NV
20 tháng 6 2020

\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)

Cộng vế với vế:

\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)

5 tháng 8 2019

\(\text{a) }\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2=\left(\frac{3}{2}\overrightarrow{MB}+\frac{3}{2}\overrightarrow{MC}\right)^2\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)^2-\left(\frac{3}{2}\overrightarrow{MB}+\frac{3}{2}\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\frac{3}{2}\overrightarrow{MB}+\frac{3}{2}\overrightarrow{MC}\right)\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}-\frac{3}{2}\overrightarrow{MB}-\frac{3}{2}\overrightarrow{MC}\right)=0\\ \Rightarrow\left[\overrightarrow{MA}+\frac{5}{2}\left(\overrightarrow{MB}+\overrightarrow{MC}\right)\right]\left[\overrightarrow{MA}-\frac{1}{2}\left(\overrightarrow{MB}+\overrightarrow{MC}\right)\right]=0\)

Gọi I là trung điểm BC

\(\Rightarrow\left(\overrightarrow{MA}+5\overrightarrow{MI}\right)\left(\overrightarrow{MA}-\overrightarrow{MI}\right)=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}+5\overrightarrow{MI}=0\\\overrightarrow{MA}-\overrightarrow{MI}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\overrightarrow{MA}=-5\overrightarrow{MI}\\\overrightarrow{IA}=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}M;A;I\text{ thẳng hàng },M\text{ nằm giữa }AI\text{ và }MA=5MI\\I\equiv A\end{matrix}\right.\)

Vậy với A là trung điểm BC thì M tùy ý.

Với A không là trung điểm BC thì \(M;A;I\text{ thẳng hàng },M\text{ nằm giữa }AI\text{ và }MA=5MI\)

5 tháng 8 2019

\(\text{b) }\left|\overrightarrow{MA}+\overrightarrow{BC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\\ \Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{BC}\right)^2-\left(\overrightarrow{MA}-\overrightarrow{MB}\right)^2=0\\ \Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{BC}+\overrightarrow{MA}-\overrightarrow{MB}\right)\left(\overrightarrow{MA}+\overrightarrow{BC}-\overrightarrow{MA}+\overrightarrow{MB}\right)=0\\ \Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{BC}+\overrightarrow{MA}-\overrightarrow{MB}\right)\left(\overrightarrow{BC}+\overrightarrow{MB}\right)=0\\ \Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{BC}+\overrightarrow{BA}\right)\left(\overrightarrow{BC}+\overrightarrow{MB}\right)=0\)

Gọi D là trung điểm AC

\(\Leftrightarrow\left(\overrightarrow{MA}+2\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{MB}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\overrightarrow{MA}+2\overrightarrow{BD}=0\\\overrightarrow{BC}+\overrightarrow{MB}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\overrightarrow{MA}=-2\overrightarrow{BD}\\\overrightarrow{BC}-\overrightarrow{BM}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\overrightarrow{MA}=-2\overrightarrow{BD}\\\overrightarrow{MC}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}MA//BD;MA=2BD\\M\equiv C\end{matrix}\right.\)

Vậy......

6 tháng 11 2020

d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)

Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)

\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)

\(\Rightarrow4MP=0\Rightarrow M\equiv P\)

6 tháng 11 2020

Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC

a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)

\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)

\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)