Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)
\(=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{n}\right)\)(đpcm)
Ta có:\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{4.4}+\frac{1}{4.9}+\frac{1}{4.16}+...+\frac{1}{4.n^2}\)
\(=\frac{1}{4}\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{n^2}\right)\)
\(Xét:\)
\(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};\frac{1}{n.n}< \frac{1}{\left(n-1\right).n}...\)
\(Suyra:\)
\(P=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(\Leftrightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Leftrightarrow P< 1-\frac{1}{n}< 1\)
\(\Leftrightarrow\frac{1}{4}.P< 1.\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{n^2}\right)< \frac{1}{4}\)
\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\left(đpcm\right)\)
Ta có :
\(N=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
Ta thấy : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.......
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)
\(\Rightarrow\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< 1.\frac{1}{2^2}\)
\(\Rightarrow N< \frac{1}{4}\)(ĐPCM)
Ủng hộ mk nha !!! ^_^
Câu 1 :
A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
B = \(\frac{1}{2}\). \(\frac{2}{3}\). \(\frac{3}{4}\)+...+ \(\frac{2010}{2011}\). \(\frac{2011}{2012}\)= \(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)= \(\frac{1}{2012}\)
Câu 2 :
a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=> \(3y-2;2x+1\in\: UC\left(-55\right)\)
=> \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng
\(2x+1\) | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
\(x\) | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
\(3y-2\) | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
\(3y\) | -53 | 57 | -9 | 13 | -3 | 7 | 1 | 3 |
\(y\) | \(\frac{-53}{3}\)(loại) | 19(chọn) | -3(chọn) | \(\frac{13}{3}\)(loại) | -1(chọn) | \(\frac{7}{3}\)(loại) | \(\frac{1}{3}\)(loại) | 1(chọn) |
\(\Leftrightarrow\)Những cặp (x;y) tìm được là :
(-1;19) ; (2;-3) ; (5;-1) ; (-28;1)
b) Ta đặt vế đó là A
Ta xét A : \(\frac{1}{4^2}\)< \(\frac{1}{2.4}\)
\(\frac{1}{6^2}\)< \(\frac{1}{4.6}\)
\(\frac{1}{8^2}\)< \(\frac{1}{6.8}\)
...
\(\frac{1}{\left(2n\right)^2}\)< \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+ \(\frac{1}{4.6}\)+...+ \(\frac{1}{\left(2n-2\right).2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+ \(\frac{2}{4.6}\)+...+ \(\frac{2}{\left(2n-2\right).2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{6}\)+...+ \(\frac{1}{2n-2}\)- \(\frac{1}{2n}\))
\(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)- \(\frac{1}{2n}\)) = \(\frac{1}{2}\). \(\frac{1}{2}\)- \(\frac{1}{2}\). \(\frac{1}{2n}\)
\(\Leftrightarrow\)A < \(\frac{1}{4}\)- \(\frac{1}{4n}\)< \(\frac{1}{4}\) ( Vì n \(\in\)N )
\(\Leftrightarrow\)A < \(\frac{1}{4}\)( đpcm ) .
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right)2n}\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}< \frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right)2n}\)\(.\frac{1}{2}\) Ta gọi là A
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-2\right)2n}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n}=\frac{1}{4}-\frac{1}{2n.2}\)
\(\Rightarrow M< \frac{1}{4}-\frac{1}{2n.2}< \frac{1}{4}\)
\(\Rightarrow M< \frac{1}{4}\left(Đpcm\right)\)
\(\)
Đặt A= \(\frac{1}{4^2}\) + \(\frac{1}{6^2}\) + \(\frac{1}{8^2}\) +...+ \(\frac{1}{\left(2n\right)^2}\)
A= \(\frac{1}{2^2.2^2}\) + \(\frac{1}{2^2.3^2}\) +...+ \(\frac{1}{2^2.n^2}\)
A= \(\frac{1}{2^2}\).( \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\) + ...+ \(\frac{1}{n^2}\))
A< \(\frac{1}{2^2}\) . ( \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) +...+ \(\frac{1}{\left(n-1\right)n}\)
A< \(\frac{1}{4}\) . ( 1-\(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) +...+ \(\frac{1}{n-1}\) - \(\frac{1}{n}\) )
A< \(\frac{1}{4}\) . (1-\(\frac{1}{n}\)) = \(\frac{1}{4}\) - \(\frac{1}{4n}\) <\(\frac{1}{4}\) => A <\(\frac{1}{4}\)