Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: B= 3 + 3
3 + 3
5 + ... + 3
1991= ﴾3 + 3
3 + 3
5
﴿ + ﴾3
7+ 3
9 + 3
11
﴿ + ... + ﴾3
1987 + 3
1989 + 3
1991
﴿.
= 3 x ﴾1 + 3
2 + 3
4
﴿ + 3
7 x ﴾1 + 3
2 + 3
4
﴿ + ... + 3
1987 x ﴾1 + 3
2 + 3
4
﴿.
= 3 x 91 + 3
7 x 91 + ... + 3
1987 x 91= 3 x 7 x 13 + 3
7 x 7 x 13 + ... + 3
1987 x 7 x 13.
= 13 x ﴾ 3 x 7 + 3
7 x 7 + ... + 3
1987 x 7﴿.
Vì B = 13 x ﴾ 3 x 7 + 3
7 x 7 + ... + 3
1987 x 7﴿ nên B chia hết cho 13.
B= ﴾3 + 3
3 + 3
5 + 3
7
﴿ + ... + ﴾3
1985 + 3
1987 + 3
1989 + 3
1991
﴿.
= 3 x ﴾1 + 3
2 + 3
4 + 3
6
﴿ + ... + 3
1985 x ﴾1 + 3
2 + 3
4 + 3
6
﴿.
= 3 x 820 + ... + 3
1985 x 820= 3 x 20 x 41 + ... + 3
1985 x 20 x 41.
= 41 x ﴾ 3 x 20 + .. + 3
1985 x 20﴿
Vì B =41 x ﴾ 3 x 20 + .. + 3
1985 x 20﴿ nên B chia hết cho 41.
TK NHA
Ta có: B= 3 + 3 3 + 3 5 + ... + 3 1991= ﴾3 + 3 3 + 3 5 ﴿ + ﴾3 7+ 3 9 + 3 11 ﴿ + ... + ﴾3 1987 + 3 1989 + 3 1991 ﴿. = 3 x ﴾1 + 3 2 + 3 4 ﴿ + 3 7 x ﴾1 + 3 2 + 3 4 ﴿ + ... + 3 1987 x ﴾1 + 3 2 + 3 4 ﴿. = 3 x 91 + 3 7 x 91 + ... + 3 1987 x 91= 3 x 7 x 13 + 3 7 x 7 x 13 + ... + 3 1987 x 7 x 13. = 13 x ﴾ 3 x 7 + 3 7 x 7 + ... + 3 1987 x 7﴿. Vì B = 13 x ﴾ 3 x 7 + 3 7 x 7 + ... + 3 1987 x 7﴿ nên B chia hết cho 13.
B= ﴾3 + 3 3 + 3 5 + 3 7 ﴿ + ... + ﴾3 1985 + 3 1987 + 3 1989 + 3 1991 ﴿. = 3 x ﴾1 + 3 2 + 3 4 + 3 6 ﴿ + ... + 3 1985 x ﴾1 + 3 2 + 3 4 + 3 6 ﴿. = 3 x 820 + ... + 3 1985 x 820= 3 x 20 x 41 + ... + 3 1985 x 20 x 41. = 41 x ﴾ 3 x 20 + .. + 3 1985 x 20﴿ Vì B =41 x ﴾ 3 x 20 + .. + 3 1985 x 20﴿ nên B chia hết cho 41.
Ta có:
\(A=3+3^3+3^5+...+3^{1991}=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(A=3.\left(1+3^2+3^4\right)+3^7.\left(1+3^2+3^4\right)+...+3^{1987}.\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(A=3.91+3^7.91+...+3^{1987}.91=3.7.13+3^7.7.13\)
\(A=13.\left(3.7.13+3^7.7+...+3^{1987}.7\right)\)
Vì: \(A=15.\left(2+2^4+...+2^{58}\right)\)nên \(A⋮13\)
Tương tự:
\(A=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(A=3.\left(1+3^2+3^4\right)+3^7.\left(1+3^2+3^4\right)+...+3^{1987}.\left(1+3^2+3^4+3^6\right)\)
\(A=3.820+...+3^{1985}.820=3.20.41+...+3^{1985}.20.41\)
\(A=41.\left(3.20+...+3^{1985}.20\right)\)nên \(B⋮41\)
:)
(3+3^3+3^5)+...+(3^1987+3^1989+3^1991)
=3x(1+3^2+3^4)+...+3^1987x(1+3^2+3^4)
=3x91+...+3^1987x91
=(3+...+3^1987)x91=(3+...+3^1987)x13x7\(⋮\)13
Vậy A\(⋮\)13
(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991)
=3x(1+3^2+3^4+3^6)+...+3^1985x(1+3^2+3^4+3^6)
=3x820+...+3^1985x820
=(3+...+3^1985)x820=(3+...+3^1985)x41x20\(⋮\)41
Vậy A\(⋮\)41
a)A=2+2^2+2^3.....+2^60
(2+2^2)+(2^3+2^4)+.....+(2^59+2^60)
2×(1+2)+2^3×(1+2)+....+2^59×(1+2)
2×3+2^3×3+...+2^59×3
vì 3 chia hết cho 3 nên:
2×3+2^3×3+...+2^59×3 chia hết cho 3
2+2^2+2^3+....+2^60
(2+2^2+2^3)+....+(2^58+2^59+2^60)
2×(1+2+2^2)+....+2^58×(1+2+2^2)
2×(1+2+4)+....+2^58×(1+2+4)
2×7+.....+2^58×7
vì 7 chia hết cho 7 nên:
2×7+....+2^58×7 chia hết cho 7
b)B=3+3^2+3^3+.....+3^1991
(3+3^2+3^3)+...+(3^1989+3^1990+3^1991)
3×(1+3+3^2)+....+3^1989×(1+3+3^2)
3×(1+3+9)+....+3^1989×(1+3+9)
3×13+....+3^1989×13
vì 13 chia hết cho 13 nên
3×13+....+3^1989×13 chia hết cho 13
Ta có: `B = 1 + 3 + 3^2 + ... + 3^1991`
`= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^1989 + 3^1990 + 3^1992)`
`= 13 + 3^3 (1 + 3 + 3^2) + ... + 3^1989 (1 + 3 + 3^2)`
`= 13 + 3^3 . 13 + ... + 3^1989 . 13`
`= 13 (1 + 3^3 + ... + 3^1989)`
Vì \(13\left(1+3^3+...+3^{1989}\right)⋮13\) nên \(B⋮13\)
`B = 1 + 3 + 3^2 + ... + 3^1991`
= (1 + 3^4) + (3 + 3^5) + ... + (3^1987 + 3^1991)`
`= 82 + 3 (1 + 3^4) + ... + 3^1987 (1 + 3^4)`
`= 82 + 3 . 82 + ... + 3^1987 . 82`
`= 82 (1 + 3 + ... + 3^1987)`
Vì \(82\left(1+3+...+3^{1987}\right)⋮41\) nên \(B⋮41\)
`C = 3 + 3^2 + 3^3 + ... + 3^1000`
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)
`= 120 + 3^4 (3 + 3^2 + 3^3 + 3^4) + ... + 3^996 (3 + 3^2 + 3^3 + 3^4)`
`= 120 + 3^4 . 120 + ... + 3^996 . 120`
`= 120 (1 + 3^4 + ... + 3^996)`
Vì \(120\left(1+3^4+...+3^{996}\right)⋮120\) nên \(C⋮120\)
Ta có: \(C=3+3^2+3^3+...+3^{1000}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{997}+3^{998}+3^{999}+3^{1000}\right)\)
\(=120\left(1+3^5+...+3^{997}\right)⋮120\)(đpcm)