Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta áp dụng cô-si la ra
a^2+b^2+c^2 ≥ ab+ac+bc
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1)
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2)
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3)
cộng (1) (2) (3) theo vế:
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc)
=> a^2 + b^2 + c^2 ≥ ab+ac+bc
dấu = khi : a = b = c
b: \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-c)^2+(a-b)^2+(b-c)^2=0
=>a=b=c
c: \(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-b)^2+(a-c)^2+(b-c)^2=0
=>a=b=c
\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(=>a^2+b^2+c^2-ab-bc-ca=0\)
\(=>2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(\left(a-b\right)^2\ge0\), \(\left(b-c\right)^2\ge0\), \(\left(c-a\right)^2\ge0\)
\(< =>a-b=0,b-c=0,c-a=0\)
\(=>a=b,b=c,c=a\)
Vậy \(a=b=c\)
a) Ta có:
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow\) \(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\) \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\) \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)
Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)
(1)(2) \(\Rightarrow\) \(\begin{cases} (a-b)^{2}=0\\ (b-c)^{2}=0\\ (a-c)^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a-b=0\\ b-c=0\\ a-c=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a=b\\ b=c\\ a=c \end{cases} \) \(\Leftrightarrow\) a=b=c
b) Ta có: \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2ac+2bc=3a^2+3b^2+3c^2\)
\(\Leftrightarrow\) \(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ac-2bc-2ab=0\)
\(\Leftrightarrow\) \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\) \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)
(1)(2) \(\Rightarrow\) \(\begin{cases} (a-b)^{2}=0\\ (b-c)^{2}=0\\ (a-c)^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a-b=0\\ b-c=0\\ a-c=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a=b\\ b=c\\ a=c \end{cases} \) \(\Leftrightarrow\) a=b=c
c. Ta có: \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2ac+2bc=3ab+3bc+3ac\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac=0\)
\(\Leftrightarrow\) \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow\) \(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\) \(\left(a^2-2bc+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\) \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Ta có: (a-b)2 \(\geq\) 0; (b-c)2 \(\geq\) 0; (a-c)2 \(\geq\) 0 (2)
(1)(2) \(\Rightarrow\) \(\begin{cases} (a-b)^{2}=0\\ (b-c)^{2}=0\\ (a-c)^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a-b=0\\ b-c=0\\ a-c=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} a=b\\ b=c\\ a=c \end{cases} \) \(\Leftrightarrow\) a=b=c
Chúc bạn học tốt
Học tại nhà - Toán - Bài 7: CMR: a = b = c nếu có 1 trong các điều kiện sau:1/ a2 + b2 + c2 = ab + bc + ca.2/ (a + b + c)2 = 3(a2 + b2 + c2)3/ (a + b + c)2 = 3 (ab + bc + ca).
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
Từ giả thuyết ta có :
\(a^2+b^2+c^2+2\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=2.0\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow a=b=c}\)
T I C K ủng hộ nha
Chúc bạn học tốt