Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
BĐT $\Leftrightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)(*)$
Áp dụng BĐT AM-GM:
$(a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2$
$(b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2$
$(a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2$
Nhân theo vế 3 BĐT trên:
$[(a+b-c)(b+c-a)(c+a-b)]^2\geq (abc)^2$
$\Rightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)$ (BĐT $(*)$ được cm)
Ta có đpcm.
b)(a-b)^2
=a^2 -2ab+b^2
=a^2 +2ab+b^2 -4ab
=(a+b)^2 - 4ab
a)(a+b)^2
=a^2 +2ab+b^2
=a^2 -2ab+b^2 +4ab
=(a-b)^2 + 4ab
c)a^3+b^3
=(a^3+3a^2b+3ab^2+b^2)-(3a^2b+3ab^2)
=(a+b)^3-3ab(a+b)
d)a^3-b^3
=(a^3-3a^2b+3ab^2-b^3)+(3a^2b-3ab^2)
=(a-b)^3+3ab(a-b)
e)(a^2+b^2)(x^2+y^2)
=(a.x)^2+(b.x)^2+(a.y)^2+(b.y)^2
=((a.x)^2-2abxy+(b.y)^2)+((a.y)^2-2abxy+(b.x)^2)
=(ax-by)^2+(ay+bx)^2
l-ike giùm mik vs công sức cả buổi đấy
ta có a+c>b suy ra (a+b+c)^2>4b^2 suy ra (a+b+c)^2+(a-b+c)^2>(a+b+c)^2>4b^2
B1:a2+b2+c2=ab+bc+ac tương đương 2(a2+b2+c2) - 2(ab+bc+ac) =0
suy ra 2a2 +2b2 +2c2 -2ab-2bc-2ac=0
suy ra (a2 -2ab+b2) +(b2-2bc+c2)+(a2-2ac+c2)=0
suy ra (a-b)2+(b-c)2+(a-c)2=0 suy ra (a-b)2=0 tương đương a-b=0 suy ra a=b (1)
(b-c)2=0 tương đương b-c=0 suy ra b=c (2)
(a-c)2 =0 tương đương a-c=0 suy ra b=c (3)
từ (1);(2);(3)suy ra a=b=c.Mà a=b=c=9 suy ra a=b=c=3(đpcm)
bai 1 : ve trai : a2 + b2 + c2 = a.a + b.b + c.c = (a.b) + (b.c) +(c.a) = ab + bc +ca = ve phai
ma a+b+c=9 suy ra : 3+3+3=9 suy ra a ;b;c deu bang 3
vi ve trai = ve phai ma a ;b ;c =3 vay dang thuc duoc chung minh
d) => 2a^2 + 2b^2 + 2c^2 = 2ab+ 2bc + 2ca
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0
( a^2 - 2ab+b^2 ) + ( a^2 - 2ac + c^2) + ( b^2 - 2bc - c^2) = 0
(a-b)^2 + (a-c)^2 + (b-c)^2 = 0
=> | ( a-b)^2 = 0 => a=b
| ( a-c)^2 = 0 => a=c
| ( b-c)^2 = 0 => b=c
=>>> a=b=c
a. \(a^3+a^2c-abc+b^2c+b^3\)
<=> \(\left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)\)
<=> (\(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
<=> \(\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
vì a+b+c =0 => đpcm
b. 2(a+1)(b+1)=(a+b)(a+b+2)
<=> \(2\left(ab+a+b+1\right)=\)\(a^2+ab+2a+ab+b^2+2b\)
<=> \(2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b\)
<=> \(a^2+b^2=2\)=> đpcm
Trả lời:
a, ( a + b )3 + ( a - b )3
= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3
= 2a3 + 6ab2
= 2a ( a2 + 3b2 ) (đpcm)
b, Sửa đề: ( a + b )3 - ( a - b )3
= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )
= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3
= 6a2b + 2b3
= 2b ( b2 + 2a2 )
a)
Biến đổi vế trái
\(VT=\left(a+b\right)\left(a-b\right)\)
\(=a^2-ab+ba-b^2\)
\(=a^2-b^2\)
\(\Rightarrow VT=VP\left(dpcm\right)\)
b)
Biến đổi vế trái
\(VT=\left(a+b\right)\left(a-b\right)\)
\(=a^2-ab+ba-b^2\)
\(=a^2-b^2\)
\(=-b^2+a^2\)
\(\Rightarrow VT\ne VP\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)\ne b^2-a^2\)
c)
Biến đổi vế trái
\(VT=\left(a+b\right)\left(b^2-ba+a^2\right)\)
\(=ab^2-ba^2+a^3+b^3-b^2a+ba^2\)
\(=a^3+b^3\)
\(\Rightarrow VT=VP\left(dpcm\right)\)