K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2024

mn giúp em với ạ

 

30 tháng 3 2024

Đây là toán nâng cao chuyên đề phân số, cấu trúc thi chuyên, thi họ sinh giỏi các cấp, thi violympic. Hôm nay Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

Để chứng minh một số không phải là số tự nhiên ta cần chứng minh số đó đứng giữa hai số tự nhiên liên tiếp. 

                                    Giải  

A = \(\dfrac{2024}{2023^2+1}\) + \(\dfrac{2024}{2023^2+2}\) + \(\dfrac{2024}{2023^2+3}\) + ... + \(\dfrac{2024}{2023^2+2023}\)

A = 2024.(\(\dfrac{1}{2023^2+1}\) + \(\dfrac{1}{2023^2+2}\)+ ... + \(\dfrac{1}{2023^2+2023}\))

Xét dãy số: 1; 2; 3;...; 2023

Dãy số trên có số số hạng là: 2023 số hạng. Vậy A có 2023 phân số:

     Vì \(\dfrac{1}{2023^2+1}>\dfrac{1}{2023^2+1}\) \(>\)...\(>\) \(\dfrac{1}{2023^2+2023}\)

Nên  A = 2024.(\(\dfrac{1}{2023^2+1}\) + \(\dfrac{1}{2023^2+2}\)+ ... + \(\dfrac{1}{2023^2+2023}\)) > \(\dfrac{2023.2024}{2023^2+2023}\)

       A > \(\dfrac{2023.\left(2023+1\right)}{2023^2+2023}\) = \(\dfrac{2023^2+2023}{2023^2+2023}\) = 1 (1)

Vì \(\dfrac{1}{2023^2+1}>\dfrac{1}{2023^2+1}\) \(>\)...\(>\) \(\dfrac{1}{2023^2+2023}\)

 A = 2024.(\(\dfrac{1}{2023^2+1}\) + \(\dfrac{1}{2023^2+2}\)+ ... + \(\dfrac{1}{2023^2+2023}\)) < \(\dfrac{2023.2024}{2023^2+1}\)

A < \(\dfrac{2023.\left(2023+1\right)}{2023^2+1}\) = \(\dfrac{2023^2+2023}{2023^2+1}\) = 1 + \(\dfrac{2022}{2023^2+1}\) < 2 (2)

Kết hợp (1) và (2) ta có

1 < A < 2 vậy A không phải là số tự nhiên (đpcm)

 

 

25 tháng 12 2023

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

29 tháng 4 2023

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

-2024/2023<-1

-1<-2023/2024

=>-2024/2023<-2023/2024

TA
28 tháng 10 2023

4072299/4048

1 tháng 11 2023

cho mik câu trả lời cụ thể đc k bn

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:

$\frac{a+2013}{a-2013}=\frac{b+2024}{b-2024}$

$\Rightarrow \frac{a-2013+4026}{a-2013}=\frac{b-2024+4048}{b-2024}$

$\Rightarrow 1+\frac{4026}{a-2013}=1+\frac{4048}{b-2024}$

$\Rightarrow \frac{4026}{a-2013}=\frac{4048}{b-2024}$

$\Rightarrow 4026(b-2024)=4048(a-2013)$

$\Rightarrow 4026b-4048a=4026.2024-4048.2013=2.2013.2024-2.2024.2013=0$

$\Rightarrow 4026b=4048a$
$\Rightarrow 2013b=2024a$

$\Rightarrow \frac{a}{2013}=\frac{b}{2024}$

Câu 1: Biểu thức \(\sqrt{x^2+2023}-2024\) có giá trị nhỏ nhất bằng:A. \(\sqrt{2023}-2021\)B. -2024C. 0D. \(\sqrt{2023}\) Câu 2: Chọn khẳng định đúng trong các khẳng định sau:A. Hai góc kề nhau có tổng số đo bằng 1800.B. Hai góc so le trong bằng nhau.C. Hai góc đồng vị bằng nhau.D. Hai góc đối đỉnh bằng nhau. Câu 3: Cho a, b, c là ba đường thẳng phân biệt. Biết a song song với b và b vuông góc với c thì...
Đọc tiếp

Câu 1: Biểu thức \(\sqrt{x^2+2023}-2024\) có giá trị nhỏ nhất bằng:

A. \(\sqrt{2023}-2021\)
B. -2024

C. 0

D. \(\sqrt{2023}\)

 

Câu 2: Chọn khẳng định đúng trong các khẳng định sau:

A. Hai góc kề nhau có tổng số đo bằng 1800.

B. Hai góc so le trong bằng nhau.

C. Hai góc đồng vị bằng nhau.

D. Hai góc đối đỉnh bằng nhau.

 

Câu 3: Cho a, b, c là ba đường thẳng phân biệt. Biết a song song với b và b vuông góc với c thì kết luận nào sau đây đúng?

A. a song song với c.

B. a trùng với c.

C. a vuông góc với c.

D. a không vuông góc với c.

 

Câu 4: Trong các phát biểu sau, phát biểu nào diễn đạt đúng nội dung của tiền đề Euclid?

A. Qua điểm A nằm ngoài đường thẳng d có ít nhất một đường thẳng song song với d.

B. Nếu qua điểm A nằm ngoài đường thẳng d mà có hai đường thẳng cùng song song với d thì chúng trùng nhau.

C. Có duy nhất một đường thẳng song song với một đường thẳng cho trước.

D. Cho điểm A nằm ngoài đường thẳng d. Đường thẳng đi qua A và song song với d không phải là đường thẳng duy nhất.

3

1: Không cớ câu nào đúng

2D

3C

4B

7 tháng 10 2023

1A

2D

3C

4A

11 tháng 9 2023

Ta có :

\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)

mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)

     \(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)

\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)

29 tháng 12 2023

\(\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{9}-\dfrac{2023}{2024}\right)\)

\(=\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{2023}{2024}\)

\(=\dfrac{2023}{2024}\)