K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

Chọn B

11 tháng 2 2018

 * n = 3k 
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7 

* n = 3k+1 
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1 

* n = 3k+2 
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3 

Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương) 

11 tháng 2 2018

câu thứ 2 đợi mình nghĩ đã nhé.

16 tháng 10 2015

xét n chẵn=>n+4 chẵn

=>(n+1)(n+4) chia hết cho 2      (1)

xét n lẻ=>n+1 chẵn

=>(n+1)(n+4) chia hết cho 2      (2)

từ (1);(2)=>đpcm

2 tháng 1 2017

n . ( n + 2 ) . ( n + 7 )

= n . n . n ( 2 + 7 )

= n3 ( 2 + 7 )

= n3 . 9 

Vì n3 bắt buộc phải chia hết cho 3 và 9 chia hết cho 3

=> n . ( n + 2 ) . ( n + 7 ) sẽ chia hết cho 3 với mọi số tự nhiên

19 tháng 10 2018

n.(n+2).(n+7)

=n.n.n.(2+7)

=n^3.(2+7)

=2^3.9

n^3 chia hết cho 3;9 nên n.(n+2).(2+7) xẽ chia hết cho 3 với mọi số tự nhiên