Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
B) Làm tương tự câu a ta được:
(a+6b); (2a+5b); (3a+4b); (4a+3b); (5a+2b); (6a+b) đều chia hết cho 7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 7.7.7.7.7.7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 76 (ĐPCM)
Vậy...
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
Xét tổng:
(5a-4b)+4(2a+b)=5a-4b+8a+4b
<=>(5a-4b)+4(2a+b)=13a
Ta có : 13 chia hết cho 13 => 13a chia hết cho 13 với mọi a thuộc Z
=> [(5a-4b)+4(2a+b)] chia hết cho 13 (1)
Ta có (5a-4b) chia hết cho 13 - Bài cho (2)
Từ (1) ; (2) => 4(2a+b) chia hết cho 13
mà (4,13) =1
=> (2a+b) chia hết cho 14
Do đó nếu (5a-4b) chia hết cho 13 thì (2a+b) chia hết cho 13
Ta có: \(5x+2y⋮17\)
\(\Leftrightarrow5x+2y+17\left(x+y\right)⋮17\)
\(\Leftrightarrow22x+19y⋮17\)
\(\Leftrightarrow\left(22x+19y\right)-\left(5x+2y\right)6⋮17\)
\(\Leftrightarrow-8x+7y⋮17\)
\(\Leftrightarrow9x+7y⋮17\)( đpcm)
+TH1: x⋮3 và y⋮3 thì x2⋮3 và y2⋮3 => x2+y2⋮3.
+TH2: x⋮3 và y không chia hết cho 3 (hoặc x không chia hết cho 3 và y⋮3)
=> x2⋮3 và y2 không chia hết cho 3 => x2+y2 không chia hết cho 3 -> loại
+TH3: x và y cùng chia 3 dư 1; giả sử x = 3a+1; y = 3b+1
\(x^2+y^2=\left(3a+1\right)^2+\left(3b+1\right)^2=9a^2+6a+1+9b^2+6b+1=3\left(3a^2+2a+3b^2+2b\right)+2\)
=> x2+y2 chia 3 dư 2 -> loại.
+TH4: x và y cùng chia 3 dư 2; giả sử x = 3a-1; y = 3b-1
\(x^2+y^2=\left(3a-1\right)^2+\left(3b-1\right)^2=9a^2-6a+1+9b^2-6b+1=3\left(3a^2-2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại
+TH5: x chia 3 dư 1 và y chia 3 dư 2 (hoặc x chia 3 dư 2 và y chia 3 dư 1); giả sử x = 3a+1; y = 3b-1
\(x^2+y^2=\left(3a+1\right)^2+\left(3b-1\right)^2=9a^2+6a+1+9b^2-6b+1=3\left(3a^2+2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại
Vậy: x2 + y2 chia hết cho 3 khi và chỉ khi x và y chia hết cho 3.
Sai đề rồi bạn ơi
VD tại a=4 b=16 thì 5.4+2.16 = 52 chia hết 13
Nhưng 4a+b thức 4.4+16=32 ko chia hết cho 13