Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n}\right)\\ =\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n-1}{n}\\ =\frac{1}{n}\)
b) \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{n}\right)\\ =\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{n+1}{n}\\ =n+1\)
c) \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\\ =\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot...\cdot\frac{\left(n-1\right)\left(n+1\right)}{n^2}\\ =\frac{\left[1\cdot2\cdot3\cdot...\cdot\left(n-1\right)\right]\cdot\left[3\cdot4\cdot5\cdot...\cdot\left(n+1\right)\right]}{\left(2\cdot3\cdot4\cdot...\cdot n\right)\left(2\cdot3\cdot4\cdot...\cdot n\right)}\\ =\frac{n+1}{2n}\)
d) \(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{99\cdot101}\right)\\ =\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot...\cdot\frac{10000}{99\cdot101}\\ =\frac{2^2\cdot3^2\cdot...\cdot100^2}{1\cdot3\cdot2\cdot4\cdot...\cdot99\cdot101}\\ =\frac{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\left(3\cdot4\cdot...\cdot101\right)}\\ =\frac{2\cdot100}{101}\\ =\frac{200}{101}\)
\(3^{8n+2}+2^{12n+3}\)
\(=24^n\cdot9+24^n\cdot8\)
\(=24^n\cdot17⋮17\)
\(B=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)\)
\(=\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)...\left(\frac{n.\left(n+2\right)+1}{n.\left(n+2\right)}\right)\)
\(=\left(\frac{2^2}{1.3}\right).\left(\frac{3^2}{2.4}\right).\left(\frac{4^2}{3.5}\right)...\left(\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\right)\)
\(=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(=\frac{\left(n+1\right)}{1}.\frac{2}{\left(n+2\right)}\)
\(=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}=2.\frac{n+1}{n+2}< 2\)(vì \(\frac{n+1}{n+2}< 1\))
Vậy B < 2
Ta có:
\(1+\frac{1}{1.3}=\frac{4}{1.3}=\frac{2^2}{1.3}\)
\(1+\frac{1}{2.4}=\frac{9}{2.4}=\frac{3^2}{2.4}\)
\(1+\frac{1}{3.5}=\frac{16}{3.5}=\frac{4^2}{3.5}\)
...
\(1+\frac{1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
=>
\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.2.3^2.4^2...\left(n+1\right)\left(n+2\right)}=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}\)
\(=\frac{2\left(n+2\right)-2}{n+2}=2-\frac{2}{n+2}< 2\)
Vậy B < 2
\(P=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}+\frac{1}{2n+3}\)
\(P=1-\frac{1}{2n+3}\)\(
3)
a)\(\frac{4n+5}{n}=4+\frac{5}{n}\)nguyen nen n\(\in\)U(5)=\(\left\{1,5\right\}\)vi n thuoc N
b)\(\frac{n+5}{n+1}=1+\frac{4}{n+1}\)nguyen nen (n+1)\(\in U\left(4\right)=\left\{1,2,4\right\}\)vi n+1>-1
=> n\(\in\left\{0,1,3\right\}\)
Bài 1:
a)[(2x-13):7].4 = 12
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
\(\Leftrightarrow\frac{8x-52}{7}=\frac{12}{1}\Rightarrow\left(8x-52\right)1=7.12\)
Chia cả hai vế cho 4 ta đc:
\(\frac{8x-52}{4}=\frac{7.12}{4}\)
\(\Leftrightarrow2x-13=21\)
\(\Leftrightarrow2x=34\)
\(\Leftrightarrow x=17\)
b.1270:[115 - (x-3)] = 254
\(\Leftrightarrow\frac{1270}{118-x}=254\)
\(\Leftrightarrow-\frac{254\left(x-113\right)}{x-118}=0\)
\(\Leftrightarrow-254\left(x-113\right)=0\)
\(\Leftrightarrow x-113=0\)
\(\Leftrightarrow x=113\)
Bài 2:(mk ngu toán CM)
Bài 3:
a)\(\frac{4n+5}{n}=\frac{4n}{n}+\frac{5}{n}=4+\frac{5}{n}\in Z\)
=>5 chia hết n
=>n thuộc Ư(5)
=>n thuộc {1;5) Vì n thuộc N
b)(n+5) chia hết cho (n+1)
=>n+1+4 chia hết n+1
=>4 chia hết n+1
=>n+1 thuộc Ư(4)
=>n+1 thuộc {1;2;4} Vì n thuộc N
=>n thuộc {0;1;3}