Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)9.10n+18
=9.(10n+2)
=9.[1000....0000(n chữ số 0) +2]
=9.[1000....0002(n-1 chứ số 0)]
ta thấy + 9.[1000....0002(n-1 chứ số 0)] chia hết cho 9
+1000...0002(n-1 chữ số 0) chia hết cho 3 (vì tổng các chữ số của nó là 3 chia hết cho 3)
=>9.[1000....0002(n-1 chứ số 0)] chia hết cho 27 hay 9.10n+18 chia hết cho 27
Ta co: 11.11.11...11=.....1
=>11.11.11...11-1=.....0
=>11.11.11...11-1 luon chia het cho 2
=>11100-1 chia het cho 1000
Hinh nhu la sai day, dung chep.
a) \(3^{10}+3^{11}+3^{12}\)
⇔ \(3^{10}\left(1+3+3^2\right)\)
⇔ \(3^{10}.13\)
⇒ \(3^{10}.13\) chia hết cho 13
11=11
112=121
113=1331
114=14641
.....
1110=1....01
=>1110-1=1...01-1=1...00
=>1110-1 \(⋮\)100
1110-1 = (11-1)(119+118+...+11+1) = 10(119+118+...+11+1)
11x - 1 chia hết cho 10 với mọi x
⇒ 119+118+...+11+1 chia hết cho 10
⇒ 1110 - 1 chia hết cho 100
A = (148)2020 + 10
A = (148)5.404 + 10
A = (145)8.404 + 10
A = 5378243232 + 10
537824 \(\equiv\) 1 (mod 11)
5378243232 \(\equiv\) 13232 (mod 11) \(\equiv\) 1 (mod 11)
10 \(\equiv\) 10 (mod 11)
⇒ 5378243232 + 10 \(\equiv\) 1 + 10 (mod 11)
⇒5378243232 + 10 \(\equiv\) 11 (mod 11) \(\equiv\) 0 (mod 11)
⇒ A = (148)2020 + 10 \(⋮\) 11 (đpcm)
\(14\equiv3\left(mod11\right)\Rightarrow\left(14^8\right)^{2020}\equiv\left(3^8\right)^{2020}\left(mod11\right)\)
\(\left(3^8\right)^{2020}=3^{8.404.5}=\left(3^5\right)^{3232}=\left(243\right)^{3232}\)
\(243\equiv1\left(mod11\right)\Rightarrow243^{3232}\equiv1\left(mod11\right)\)
\(\Rightarrow\left(14^8\right)^{2020}\equiv1\left(mod11\right)\)
\(\Rightarrow\left(14^8\right)^{2020}+10⋮11\)