Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hình vuông ABCD, M là 1 điểm nằm giữa B và C . Kẻ AN vuông góc vơi AM, AP vuông góc với MN. Gọi Q là giao điểm của AM với CD. C/m 1/AM^2+1/AQ^2 ko đổi5 khí M di cghuyeern trên BC
Nếu tính theo ngón tay thì 1+1= 2,có nghĩa là giơ 2 ngón trỏ và ngón giữa tạo thành hình chữ V
Mà V theo số la mã là 5
VẬY 1 + 1 = 5
HOK TOT
Câu hỏi này có một thời gian tôi cũng cố gắng đi tìm câu trả lời ! Rất hấp dẫn.
Để hiểu về vấn đề này, ta phải đi về tận cội nguồn sâu xa của toán học. Có lẽ tôi chỉ nói vắn tắt.
1+1=2. Đó chẳng qua là do sự hiểu biết của con người.
Nếu chúng ta nhìn bình thường thì chỉ thấy, oh, đơn giản 1+1=2, nhưng chúng ta nhìn theo kiểu này, +1 chính là phép biểu hiện số liền sau. Như vậy, 1+1 nghĩa là số liền sau số 1, n+1 nghĩa là số liền sau số n. Một cách nhìn vấn đề rất trực quan.
Nhà toán học đã đưa ra hệ tiên đề Peano gồm 4 tiên đề như sau:
Có một tập hợp N gồm các tính chất sau:
1/ Với mỗi phần tử x trong N có một phần tử, ký hiệu là S(x), trong N được gọi là phần tử kế tiếp của x
2/ Cho x và y trong N sao cho, nếu S(x)=S(y) thì x = y
3/ Có một phần tử trong N ký hiệu là 1 sao cho 1 không là phần tử kế tiếp của một tử nào trong N (nghĩa là không tồn tại x sao cho S(x)=1 )
4/ Cho U là tập con của N sao cho 1 thuộc U và S(x) thuộc U x thuộc U. Lúc đó U = N
Ta lưu ý rằng, các phép cộng, phép nhân trên N cũng chỉ là một ánh xạ từ NxN -> N
Với các định nghĩa trên, ta có thể xác định 2 là S(1), 3 là S(2), 4 là S(3) .........
Ta cũng có thể xác định phép cộng trên N như sau: n+1 = S(n), n+2=S(n+1)
Ta cũng có thể xác định phép nhân trên N như sau: 1.n = n, 2.n = n+n, ....
Và do đó việc 1+1=2 là do từ các tiên đề Peano mà có.
Lưu ý: Từ các tiên đề Peano, định nghĩa phép công, phép nhân, ta có thể CM các tính chất giao hoán, phân phối. Và đặc biệt, quan trọng nhất là: Tập N được định nghĩa như trên là duy nhất theo nghĩa song ánh (Nếp tồn tại tập M thỏa các tiên đề Peano, thì tồn tại song ánh từ N vào M)
Giả sử tồn tại 1 số \(k>1\) sao cho \(u_k\) là số hữu tỉ
\(\Rightarrow u_k=\sqrt{1+2u_k.u_{k-1}}\Rightarrow u_k^2=1+2u_k.u_{k-1}\)
\(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}=u_{k-1}\)
Do \(u_k\) hữu tỉ \(\Rightarrow\dfrac{u_k}{2}-\dfrac{1}{2u_k}\) hữu tỉ
\(\Rightarrow u_{k-1}\) hữu tỉ
Theo nguyên lý quy nạp, ta suy ra mọi số hạng trong dãy đều là số hữu tỉ
Nhưng \(u_2=1+\sqrt{2}\) là số vô tỉ (trái với giả thiết)
Vậy điều giả sử là sai hay với mọi \(k>1\) thì \(u_k\) luôn là số vô tỉ
Hay \(u_{2019}\) là số vô tỉ
anh có thể giúp em tính số hạng thứ 10 của dãy được không ạ
Ta có \(x^5-x^2-2x-1=0\Leftrightarrow x^5=\left(x+1\right)^2\).
Ta thấy nếu x là 1 nghiệm của pt trên thì x \(\geq\) 0. Từ đó \(\left(x+1\right)^2\ge1\Rightarrow x^5\ge1\Rightarrow x\ge1\).
Xét hàm số \(f\left(x\right)=x^5-x^2-2x-1=0\) trên khoảng \([1;+\infty)\). Ta có \(f'\left(x\right)=5x^4-2x-2=x^4+\left(2x^4-2x\right)+\left(2x^4-2\right)>0\) nên hàm số đồng biến trên khoảng \([1;+\infty)\).
Mặt khác ta có f(x) liên tục trên đoạn \(\left[1;2\right]\) và \(f\left(1\right).f\left(2\right)< 0\) nên hàm số có ít nhất một nghiệm trên khoảng \(\left[1;2\right]\).
Vậy phương trình đã cho có ít nhất một nghiệm.
chịu thôi
x+1=D,D thuộc tập hợp số