K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

Hỏi lớp 1 ik 

29 tháng 7 2019

Toán đại liên quan gì đến hình ?

1 + 1 = 2

Vì 2 - 1 = 1

21 tháng 8 2019

 Câu hỏi này có một thời gian tôi cũng cố gắng đi tìm câu trả lời ! Rất hấp dẫn.
Để hiểu về vấn đề này, ta phải đi về tận cội nguồn sâu xa của toán học. Có lẽ tôi chỉ nói vắn tắt.
1+1=2. Đó chẳng qua là do sự hiểu biết của con người.
Nếu chúng ta nhìn bình thường thì chỉ thấy, oh, đơn giản 1+1=2, nhưng chúng ta nhìn theo kiểu này, +1 chính là phép biểu hiện số liền sau. Như vậy, 1+1 nghĩa là số liền sau số 1, n+1 nghĩa là số liền sau số n. Một cách nhìn vấn đề rất trực quan.
Nhà toán học đã đưa ra hệ tiên đề Peano gồm 4 tiên đề như sau:
Có một tập hợp N gồm các tính chất sau:
1/ Với mỗi phần tử x trong N có một phần tử, ký hiệu là S(x), trong N được gọi là phần tử kế tiếp của x
2/ Cho x và y trong N sao cho, nếu S(x)=S(y) thì x = y
3/ Có một phần tử trong N ký hiệu là 1 sao cho 1 không là phần tử kế tiếp của một tử nào trong N (nghĩa là không tồn tại x sao cho S(x)=1 )
4/ Cho U là tập con của N sao cho 1 thuộc U và S(x) thuộc U x thuộc U. Lúc đó U = N

Ta lưu ý rằng, các phép cộng, phép nhân trên N cũng chỉ là một ánh xạ từ NxN -> N
Với các định nghĩa trên, ta có thể xác định 2 là S(1), 3 là S(2), 4 là S(3) .........
Ta cũng có thể xác định phép cộng trên N như sau: n+1 = S(n), n+2=S(n+1)
Ta cũng có thể xác định phép nhân trên N như sau: 1.n = n, 2.n = n+n, ....

Và do đó việc 1+1=2 là do từ các tiên đề Peano mà có.

Lưu ý: Từ các tiên đề Peano, định nghĩa phép công, phép nhân, ta có thể CM các tính chất giao hoán, phân phối. Và đặc biệt, quan trọng nhất là: Tập N được định nghĩa như trên là duy nhất theo nghĩa song ánh (Nếp tồn tại tập M thỏa các tiên đề Peano, thì tồn tại song ánh từ N vào M)
 

NV
26 tháng 10 2020

1.

Đặt \(\sqrt[12]{a}=x\ge0\)

\(\Rightarrow VT=2^x+2^{x^3}\ge2\sqrt{2^{x+x^3}}\ge2\) (đpcm)

Dấu "=" xảy ra khi \(x=0\) hay \(a=0\)

2.

\(y=2^{x-1}+2^{3-x}\ge2\sqrt{2^{x-1+3-x}}=4\)

\(y_{min}=4\) khi \(x-1=3-x\Leftrightarrow x=2\)

24 tháng 2 2019

cho hình vuông ABCD, M là 1 điểm nằm giữa B và C . Kẻ AN vuông góc vơi AM, AP vuông góc với MN. Gọi Q là giao điểm của AM với CD. C/m 1/AM^2+1/AQ^2 ko đổi5 khí M di cghuyeern trên BC

24 tháng 2 2019

Nếu tính theo ngón tay thì 1+1= 2,có nghĩa là giơ 2 ngón trỏ và ngón giữa tạo thành hình chữ V

Mà V theo số la mã là 5

VẬY 1 + 1 = 5

HOK TOT

x+1=D,D thuộc tập hợp số

28 tháng 2 2020

Ai giải giúp mình với ạ

NV
8 tháng 3 2022

Không mất tính tổng quát, giả sử \(x\ge y\ge z\)

\(y^2-yz+z^2=y^2+\left(z-y\right)y\le y^2\Rightarrow\dfrac{1}{y^2-yz+z^2}\ge\dfrac{1}{y^2}\)

Tương tự: \(\dfrac{1}{z^2-xz+x^2}\ge\dfrac{1}{x^2}\)

\(\Rightarrow P\ge\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{x^2-xy+y^2}+\dfrac{x^2-xy+y^2}{x^2y^2}+\dfrac{1}{xy}\)

\(P\ge2\sqrt{\dfrac{x^2-xy+y^2}{x^2y^2\left(x^2-xy+y^2\right)}}+\dfrac{1}{xy}=\dfrac{3}{xy}\ge\dfrac{12}{\left(x+y\right)^2}\ge\dfrac{12}{\left(x+y+z\right)^2}=3\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;0\right)\) và hoán vị