Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: \(x\ne1\)
\(C=\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right):\frac{x^2+1}{x^2+x+1}\)
\(=\left(\frac{x^2+2+\left(x+1\right)\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right).\frac{x^2+x+1}{x^2+1}\)
\(=\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x^2+1}\)
\(=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x^2+1}\)
\(=\frac{x}{x^2+1}\)
b. \(\left|x+1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}C=\frac{1}{1+1}=\frac{1}{2}\\C=\frac{-3}{\left(-3\right)^2+1}=\frac{-3}{10}\end{matrix}\right.\)
c. Bài này mình chỉ tìm dược max thôi, không tìm thấy min.
\(C=\frac{x}{x^2+1}=\frac{2x}{2\left(x^2+1\right)}=\frac{x^2+1-x^2+2x-1}{2\left(x^2+1\right)}=\frac{1}{2}-\frac{\left(x-1\right)^2}{2\left(x^2+1\right)}\le\frac{1}{2}\)
\(\Rightarrow C_{max}=\frac{1}{2}\) khi \(x=1\)
\(C=\frac{2x}{2\left(x^2+1\right)}=\frac{-x^2-1+x^2+2x+1}{2\left(x^2+1\right)}=-\frac{1}{2}+\frac{\left(x+1\right)^2}{2\left(x^2+1\right)}\ge-\frac{1}{2}\)
\(\Rightarrow C_{min}=-\frac{1}{2}\) khi \(x=-1\)
a) ĐKXĐ: \(x\ne\pm1;x\ne0\)
\(M=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2020}{x}\)
\(=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-4x-1}{\left(x+1\right)\left(x-1\right)}\right).\frac{x+2020}{x}\)
\(=\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x+1\right)\left(x-1\right)}.\frac{x+2020}{x}\)
\(=\frac{x^2-1}{\left(x+1\right)\left(x-1\right)}.\frac{x+2020}{x}\)
\(=\frac{x+2020}{x}\)
b) Tại x = -1, ta có:
\(M=\frac{-1+2020}{-1}=\frac{2019}{-1}=-2019\)
Tại x = \(\frac{1}{2}\), ta có:
\(M=\frac{\frac{1}{2}+2020}{\frac{1}{2}}=\frac{\frac{4041}{2}}{\frac{1}{2}}=\frac{4041}{2}.2=4041\)
a, \(M=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{1}{x^2-1}\)
\(=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x+1}\right):\frac{1}{x^2-1}\)
\(=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{1}{x^2-1}\)
\(=\left(\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\right).\left(x-1\right)\left(x+1\right)=2x+1\)
b, Thay x = 1/2 vào biểu thức trên ta được : \(2.\frac{1}{2}+1=1\)
c, Để M luôn dương hay \(2x+1\ge0\Leftrightarrow x\ge-\frac{1}{2}\)
Vậy với x \(\ge-\frac{1}{2}\)thì \(M\ge0\)