K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

a) ĐKXĐ: \(x\ne\pm1;x\ne0\)

\(M=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2020}{x}\)

\(=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-4x-1}{\left(x+1\right)\left(x-1\right)}\right).\frac{x+2020}{x}\)

\(=\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x+1\right)\left(x-1\right)}.\frac{x+2020}{x}\)

\(=\frac{x^2-1}{\left(x+1\right)\left(x-1\right)}.\frac{x+2020}{x}\)

\(=\frac{x+2020}{x}\)

b) Tại x = -1, ta có:

\(M=\frac{-1+2020}{-1}=\frac{2019}{-1}=-2019\)

Tại x = \(\frac{1}{2}\), ta có:

\(M=\frac{\frac{1}{2}+2020}{\frac{1}{2}}=\frac{\frac{4041}{2}}{\frac{1}{2}}=\frac{4041}{2}.2=4041\)

12 tháng 6 2018

a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)

   \(P=\frac{x}{x+1}\)

b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)

Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)

Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó: 

 \(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)

c) P > 1 khi \(\frac{x}{x+1}>1\)

   \(\Leftrightarrow1-\frac{1}{x+1}>1\)

   \(\Leftrightarrow\frac{1}{x+1}< 0\)

   \(\Leftrightarrow x< -1\)

e) Đề không rõ ràng

1 tháng 5 2021

dễ mà ko bt lm à

9 tháng 12 2017

\(M=\frac{4x+8}{x^2-1}:\frac{x+2}{x+1}-\frac{x-2}{1-x}\)   \(ĐKXĐ:x\ne\pm1\)

\(M=\frac{4\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{x+2}+\frac{x-2}{x-1}\)

\(M=\frac{4}{x-1}+\frac{x-2}{x-1}\)

\(M=\frac{4+x-2}{x-1}\)

\(M=\frac{x+2}{x-1}\)

vậy \(M=\frac{x+2}{x-1}\)

1 tháng 5 2021

a, \(M=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{1}{x^2-1}\)

\(=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x+1}\right):\frac{1}{x^2-1}\)

\(=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{1}{x^2-1}\)

\(=\left(\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\right).\left(x-1\right)\left(x+1\right)=2x+1\)

b, Thay x = 1/2 vào biểu thức trên ta được : \(2.\frac{1}{2}+1=1\)

c, Để M luôn dương hay \(2x+1\ge0\Leftrightarrow x\ge-\frac{1}{2}\)

Vậy với x \(\ge-\frac{1}{2}\)thì \(M\ge0\)

7 tháng 2 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{4x^2}{1-x^2}\right):\frac{2x^2-2}{x^2-2x+1}\)

\(\Leftrightarrow A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4x^2}{x^2-1}\right):\frac{2\left(x^2-1\right)}{\left(x-1\right)^2}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{4x-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{-4x\left(x-1\right)^3}{2\left(x-1\right)^2\left(x+1\right)^2}\)

\(\Leftrightarrow A=\frac{-2x\left(x-1\right)}{\left(x+1\right)^2}\)

b) Thay x = -3 vào A, ta được :

\(A=\frac{\left(-2\right)\left(-3\right)\left(-3-1\right)}{\left(-3+1\right)^2}\)

\(\Leftrightarrow A=\frac{6.\left(-4\right)}{2^2}\)

\(\Leftrightarrow A=-6\)

c) Để A > -1

\(\Leftrightarrow-2x\left(x-1\right)>-\left(x+1\right)^2\)

\(\Leftrightarrow2x\left(x-1\right)< \left(x+1\right)^2\)

\(\Leftrightarrow2x^2-2x< x^2+2x+1\)

\(\Leftrightarrow x^2-4x-1< 0\)

\(\Leftrightarrow\left(x-2\right)^2-5< 0\)

\(\Leftrightarrow\left(x-2\right)^2< 5\)

Đoạn này bạn tự tìm giá trị x thỏa mãn là xong (Chú ý ĐKXĐ)

a) \(p=\left(\frac{x^2-x}{x+1}\right)\left(\frac{4x-2x+2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x-1\right)}{x+1}.\frac{2\left(x+1\right)}{x\left(x-1\right)}=2\)

b)\(m=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2}{x-2}=1+\frac{4}{x-2}\)

Để m nguyên thì \(4⋮x-2\)

\(\Rightarrow x-2\in\left\{1,2,4,-1,-2,-4\right\}\)

\(\Leftrightarrow x\in\left\{3,4,6,1,0,-2\right\}\)

8 tháng 3 2020

\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{x-2}\)

Để M có giá trị nguyên thì x+2 chia hết cho x-2

Ta có x+2=x-2+4

=> x-2+4 chia hết cho x-2

=>4 chia hết cho x-2

Vì x nguyên => x-2 nguyên

=> x-2 thuộc Ư (4)={-4;-2;-1;1;2;4}

Ta có bảng

x-2-4-2-1124
x-201346