Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
Ta có :
\(\dfrac{a-b}{a+b}=\dfrac{a+b-2b}{a+b}=\dfrac{a+b}{a+b}-\dfrac{2b}{a+b}=1-\dfrac{2b}{a+b}\)
\(\dfrac{b-c}{b+c}=\dfrac{b+c-2c}{b+c}=\dfrac{b+c}{b+c}-\dfrac{2c}{b+c}=1-\dfrac{2c}{b+c}\)
Mà \(\dfrac{a-b}{a+b}=\dfrac{b-c}{b+c}\)
\(\Leftrightarrow1-\dfrac{2b}{a+b}=1-\dfrac{2c}{b+c}\)
\(\Leftrightarrow\dfrac{b}{a+b}=\dfrac{c}{b+c}\)
\(\Leftrightarrow b^2+bc=ac+bc\)
\(\Leftrightarrow b^2=ac\left(đpcm\right)\)