Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mình với Nguyễn Huy Tú;Ace Legona;soyeon_Tiểubàng giải;Lê Nguyên Hạo...
Tại x = 1 thì ax2 + bx + c = a.12 + b .1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của đa thức ax2 + bx + c nếu a + b+ c = 0
\(\frac{a}{b}< \frac{c}{d}\) => ad < bc
=> ad + ab < bc + ab
=> a(b + d) < b(a + c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> ad < bc
=> ad + cd< bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> đccm
b) \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48}\); \(\frac{-14}{48};\frac{-13}{48}\)\(< \frac{-12}{48}=\frac{-1}{4}\)
ok mk nhé!!! 4556577568797902451353466545475678769863513532345634645645745
a/ \(\frac{a+b}{a-b}-\frac{c+a}{c-a}=\frac{\left(a+b\right)\left(c-a\right)-\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=.\)
\(=\frac{\left(ac-a^2+bc-ab\right)-\left(ac-bc+a^2-ab\right)}{\left(a-b\right)\left(c-a\right)}=\frac{2bc-2a^2}{\left(a-b\right)\left(c-a\right)}=\)
\(=\frac{2bc-2bc}{\left(a-b\right)\left(c-a\right)}=0\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
b/ \(=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\) (dpcm)
Bài 1)
a) Nếu AB = AC
=> ∆ABC cân tại A
=> ABC = ACB
Mà AM = AN
=> MB = NC
Xét ∆MCB và ∆NBC ta có :
MB = MC(cmt)
ABC = ACB (cmt)
BC chung
=> ∆MCB = ∆NBC (cgc)
=> MC = NB (dpcm)
1>
( Thông cảm tỉ lệ :P)
+ Nếu AB = AC :
Xét \(\Delta ABN\)và \(\Delta ACM\)có : \(\hept{\begin{cases}AN=AM\left(gt\right)\\\widehat{A}chung\\AB=AC\end{cases}}\)
=> \(\Delta ABN\)= \(\Delta ACM\)(c-g-c)
=> BN = CM ( hai cạnh tương ứng)
b)
+ Nếu AB > AC :
Trên cạnh AB lấy D sao cho AD = AC => AD < AB
=> D nằm giữa B và M
+ Cmtt câu a ta có : \(\Delta ADN=\Delta ACM\)
=> DN = CM ( 2 cạnh tương ứng) (1)
+ Vì N nằm giữa A và C => Tia DN nằm giữa 2 tia DA và DC
=> \(\widehat{ADN}< \widehat{ADC}\)
+ Vì AD = AC => tg ADC cân tại A => \(\widehat{ADC}< 90^o\)
=> Góc ADN < 90o mà \(\widehat{ADN}+\widehat{NDB}=180^o\)( 2 góc kề bù)
=> \(\widehat{NDB}>90^o\)
Xét tg NBD có \(\widehat{NDB}>90^o\)=> Cạnh BN lớn nhất => BN > DN (2)
Từ (1) và (2) => BN > CM
Gọi số cộng thêm là n \(\left(ĐK:n\ne0\right)\)
Ta có: \(\frac{a}{b}=\frac{a+n}{b+n}\)
\(\Rightarrow a\left(b+n\right)=b\left(a+n\right)\\ \Rightarrow ab+an=ba+bn\\ \Rightarrow an=bn\\ \Rightarrow a=b\)
Vậy \(\frac{a}{b}\) có thể là bất kì phân số nào sao cho a = b
Gọi số cộng thêm vào là c \(\left(c\ne0\right).\)
Ta có: \(\frac{a}{b}=\frac{\left(a+c\right)}{\left(b+c\right)}\)
\(\Rightarrow a.\left(b+c\right)=b.\left(a+c\right)\)
\(\Rightarrow ab+ac=ba+bc.\)
\(\Rightarrow ac=bc\) (trừ cả 2 vế cho \(ab\))
Vì \(ac=bc\) và \(c=c.\)
\(\Rightarrow a=b.\)
\(\Rightarrow\frac{a}{b}=1.\)
Vậy \(\frac{a}{b}\) có thể là mọi số sao cho \(a=b.\)
Chúc bạn học tốt!
cac ban khong lam thi minh lam nhe
sang tien cho ****
he he he he!
Vi :\(0<\frac{a}{b}<1\left(b>0\right)\) nen a<b ma m>0, do do am<bm , them ab vao 2 ve :
ab+am<ab+bm hay a(b+m)<b(a+m) ma b>0 va b+m>0 nen suy ra :
\(\frac{a}{b}<\frac{a+m}{b+m}\)
**** nhe moi ng