K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

giúp mình với Nguyễn Huy Tú;Ace Legona;soyeon_Tiểubàng giải;Lê Nguyên Hạo...

13 tháng 5 2017

Tại x = 1 thì ax2 + bx + c = a.12 + b .1 + c = a + b + c = 0

Vậy x = 1 là nghiệm của đa thức ax2 + bx + c nếu a + b+ c = 0

23 tháng 8 2016

giup My vs

\(\frac{a}{b}< \frac{c}{d}\) => ad < bc

=> ad + ab < bc + ab

=> a(b + d) < b(a + c)

=> \(\frac{a}{b}< \frac{a+c}{b+d}\)

=> ad < bc

=> ad + cd< bc + cd

=> d(a + c) < c(b + d)

=> \(\frac{a+c}{b+d}< \frac{c}{d}\)

=> đccm

b) \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48}\)\(\frac{-14}{48};\frac{-13}{48}\)\(< \frac{-12}{48}=\frac{-1}{4}\)

ok mk nhé!!! 4556577568797902451353466545475678769863513532345634645645745

27 tháng 9 2016

a/ \(\frac{a+b}{a-b}-\frac{c+a}{c-a}=\frac{\left(a+b\right)\left(c-a\right)-\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=.\)

\(=\frac{\left(ac-a^2+bc-ab\right)-\left(ac-bc+a^2-ab\right)}{\left(a-b\right)\left(c-a\right)}=\frac{2bc-2a^2}{\left(a-b\right)\left(c-a\right)}=\)

\(=\frac{2bc-2bc}{\left(a-b\right)\left(c-a\right)}=0\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

b/ \(=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\) (dpcm)

Bài 1) 

a) Nếu AB = AC 

=> ∆ABC cân tại A 

=> ABC = ACB 

Mà AM = AN 

=> MB = NC 

Xét ∆MCB và ∆NBC ta có : 

MB = MC(cmt)

ABC = ACB (cmt)

BC chung 

=> ∆MCB = ∆NBC (cgc)

=> MC = NB (dpcm)

18 tháng 7 2019

1>  B C A M N

( Thông cảm tỉ lệ :P)

+ Nếu AB = AC :

Xét \(\Delta ABN\)và \(\Delta ACM\)có : \(\hept{\begin{cases}AN=AM\left(gt\right)\\\widehat{A}chung\\AB=AC\end{cases}}\)

=> \(\Delta ABN\)\(\Delta ACM\)(c-g-c)

=> BN = CM ( hai cạnh tương ứng)

b)  B C A M N D

+ Nếu AB > AC :

Trên cạnh AB lấy D sao cho AD = AC => AD < AB

=> D nằm giữa B và M 

+ Cmtt câu a ta có : \(\Delta ADN=\Delta ACM\)

=> DN = CM ( 2 cạnh tương ứng) (1)

+ Vì N nằm giữa A và C => Tia DN nằm giữa 2 tia DA và DC

=> \(\widehat{ADN}< \widehat{ADC}\)

+ Vì AD = AC => tg ADC cân tại A => \(\widehat{ADC}< 90^o\)

=> Góc ADN < 90o mà \(\widehat{ADN}+\widehat{NDB}=180^o\)( 2 góc kề bù)

=> \(\widehat{NDB}>90^o\)

Xét tg NBD có \(\widehat{NDB}>90^o\)=> Cạnh BN lớn nhất => BN > DN (2)

Từ (1) và (2) => BN > CM

18 tháng 9 2019

Gọi số cộng thêm là n \(\left(ĐK:n\ne0\right)\)

Ta có: \(\frac{a}{b}=\frac{a+n}{b+n}\)

\(\Rightarrow a\left(b+n\right)=b\left(a+n\right)\\ \Rightarrow ab+an=ba+bn\\ \Rightarrow an=bn\\ \Rightarrow a=b\)

Vậy \(\frac{a}{b}\) có thể là bất kì phân số nào sao cho a = b

18 tháng 9 2019

Gọi số cộng thêm vào là c \(\left(c\ne0\right).\)

Ta có: \(\frac{a}{b}=\frac{\left(a+c\right)}{\left(b+c\right)}\)

\(\Rightarrow a.\left(b+c\right)=b.\left(a+c\right)\)

\(\Rightarrow ab+ac=ba+bc.\)

\(\Rightarrow ac=bc\) (trừ cả 2 vế cho \(ab\))

\(ac=bc\)\(c=c.\)

\(\Rightarrow a=b.\)

\(\Rightarrow\frac{a}{b}=1.\)

Vậy \(\frac{a}{b}\) có thể là mọi số sao cho \(a=b.\)

Chúc bạn học tốt!

3 tháng 12 2015

cac ban khong lam thi minh lam nhe 

sang tien cho **** 

he he he he!

Vi :\(0<\frac{a}{b}<1\left(b>0\right)\) nen a<b ma m>0, do do am<bm , them ab vao 2 ve : 

ab+am<ab+bm hay a(b+m)<b(a+m) ma b>0 va b+m>0 nen suy ra : 

\(\frac{a}{b}<\frac{a+m}{b+m}\)

**** nhe moi ng