K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Ta thấy : \(6^{2n}+19^n-2^{n+1}=36^n+19^n-2.2^n=36^n-2^n+19^n-2^n\)

\(=34.\left(36^{n-1}+...+2^{n-1}\right)+17\left(18^{n-1}+...+2^{n-1}\right)\)

Dễ thấy biiểu thức trên chia hết cho 17 (đpcm).

20 tháng 11 2014

B,

6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1

Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ

Ư (4) ={ 1;2;4}

Vì n là số lẻ nên

2n + 1 =1 

 2n       =1-1

2n        =0

 n          = 0 : 2 =0

Vậy n =0

30 tháng 12 2015

A3n+7 chia het cho n+2

3n-12+5 chia het cho n+2

(3n-12)+5 chia het cho n+2

3(n-4)+5 chia het cho n+2

=>5 chia het cho n+2

=>n+2 thuoc (U)5={1;-1;5;-5}

Neu:n+2=1=>n=-1(loai)

Neu:n+2=-1=>n=-3(loai)

Neu:n+2=5=>n=3

Neu:n+2=-5=>n=-7(loai)

Vay:n=3

29 tháng 4 2016

ta có n+1:n+1

2(n+1):n+1

2n+2:n+1

mà 2n-3:n+1

=)2n+2-5:n+1

n+1 thuộc Ư(5)={1;-1;5;-5}

vậy n={0;-2;4;6}

đung n

3 tháng 5 2018

Ta có

\(2n-3=2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

26 tháng 4 2017

Bạn ơi, giải dùm mình bài 

Cho tam giác abc có ab=ac=bc. Hai đường phân giác bm và cm cắt nhau tại i . Chứng minh rằng: a) ia=ib=ic b) góc aib=góc bic=góc cia

nhaa

17 tháng 8 2017

eo biet

\(A=\dfrac{6n+3-2}{2n+1}=3-\dfrac{2}{2n+1}\)

Để A max thì 2/2n+1 min

mà n nguyên

nên 2n+1=-1

=>2n=-2

=>n=-1

4 tháng 2 2019

\(11.5^{2n}+2^{3n+2}+2^{3n+1}\)

\(=17.5^{2n}-6.5^{2n}+2^{3n}.6\)

\(=17.5^{2n}-6\left(5^{2n}-2^{3n}\right)\)

\(=17.5^{2n}-6\left(25^n-8^n\right)\)

Có \(17.5^{2n}⋮17\)

\(25^n-18^n⋮\left(25-18\right)⋮17\left(với\forall n\right)\)

\(\RightarrowĐpcm\)

4 tháng 2 2019

11.52n + 23n+2 + 23n+1 

= 11.25n + 4.23n + 2.23n

= 17.25n - 6.25n + 2.23n.(2+1)

= 17.25n -  6.25n + 6.23n

= 17.25n - 6.(25n - 23n)

= 17.25n - 6.(25n - 8n)

mà 25 - 8 = 17 chia hết cho 17

=> 25n - 8n chia hết cho 17

=> 17.25n - 6.(25n - 8n) chia hết cho 17

=> đpcm