K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

ta có:

\(\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{\left(b-a\right).\left(b+a\right)+\left(a-c\right).\left(a+c\right)}{\left(a+b\right).\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\left(1\right)\)

\(\frac{c^2-a^2}{\left(b+c\right).\left(b+a\right)}=\frac{c^2-b^2+b^2-a^2}{\left(b+c\right).\left(b+a\right)}=\frac{\left(c-b\right).\left(b+c\right)+\left(b-a\right).\left(a+b\right)}{\left(b+c\right).\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\left(2\right)\)

\(\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{a^2-c^2+c^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{\left(a-c\right).\left(a+c\right)+\left(c-b\right).\left(c+b\right)}{\left(c+a\right).\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\left(3\right)\)

từ (1),(2),(3)

\(\Rightarrow\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right).\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}\)

\(=\frac{b-a}{a+c}+\frac{a-c}{a+b}+\frac{c-b}{a+b}+\frac{b-a}{b+c}+\frac{a-c}{c+b}+\frac{c-b}{c+a}=\frac{c-a}{a+c}+\frac{b-c}{b+c}+\frac{a-b}{a+b}\Rightarrowđpcm\)

2 tháng 11 2019

a) A = \(\frac{a}{\left(a-b\right)\left(a-c\right)}+\frac{b}{\left(b-a\right)\left(b-c\right)}+\frac{c}{\left(c-a\right)\left(c-b\right)}\)

=> A = \(\frac{a}{\left(a-b\right)\left(a-c\right)}-\frac{b}{\left(a-b\right)\left(b-c\right)}+\frac{c}{\left(a-c\right)\left(b-c\right)}\)

=> A = \(\frac{a\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\frac{b\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

=> A + \(\frac{ab-ac-ab+bc+ac-bc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\)

2 tháng 11 2019

\(B=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^2\left(c-a\right)}{\left(b-a\right)\left(b-c\right)\left(c-a\right)}\)

\(+\frac{c^2\left(a-b\right)}{\left(c-a\right)\left(c-b\right)\left(a-b\right)}\)

\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^2\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(+\frac{c^2\left(a-b\right)}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)

19 tháng 2 2017

1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)

CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)

Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Thay vào biểu thwusc M ta được M=3abc (ĐPCM)

2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó

Nếu không thấy thì em có thể quy đồng lên mà rút gọn

20 tháng 2 2017

vâng e cảm ơn anh 

6 tháng 8 2018

Ai tích mình mình tích lại

19 tháng 8 2017

\(VT=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{-1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=VP\)

19 tháng 8 2017

Ta có: 

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{c-a}+\frac{1}{a-b}\)

Tương tự:

 \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b}{\left(b-c\right)\left(b-a\right)}+\frac{b-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)

Và: \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c}{\left(c-a\right)\left(c-b\right)}+\frac{c-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)

=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

=> đpcm

1 tháng 12 2018

bo ko biet

14 tháng 11 2019

Ta có

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)

Tương tự ta có

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\)

\(\frac{a-b}{\left(c-b\right)\left(c-a\right)}=\frac{1}{b-c}+\frac{1}{c-a}\left(3\right)\)

Từ (1) (2) và (3) ta có

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(đpcm\right)\)

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{c-b}{\left(a-b\right)\left(c-a\right)}=\frac{\left(c-a\right)+\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Làm tương tự ta được:\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\)

                           \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(ĐPCM\right)\)

1 tháng 7 2017

tìm lag mắt mới ra Xem câu hỏi