- Có đa thức ; nhị thức ; thương của phép chiacholàđược dư là
- Khi đó:
- Khi đó: . Bài toán được chứng minh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sơ lược về định lý bê-du
1) Định lý bê-du : số dư trong phép chia đa thức f(x) cho nhị thức x-a đúng bàng f(a)
Vd: f(x)=x3−6x+5f(x)=x3−6x+5 thì
số dư trong phép chia f(x) cho x-1 là f(1)=1-6+5=0
2) hệ quả
Nếu a là nghiệm của đa thức f(x) thì f(x) chia hết cho x-a
từ đó ta có thể áp dụng vào việc phân tích đa thức thành nhân tử
Nếu đa thức f(x) có nghiệm là x=a thì khi phân tích đa thức thành nhân tử , tích sẽ chứa x-a
đặt \(f\left(x\right)=x^{2005}+x^{2004}\)
đa thức f(x) chia cho đa thức x - 1 có số dư là f(1) = 2
đa thức f(x) chia cho đa thức x + 1 có số dư là f(-1) = 0
đặt \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b=\left(x-1\right)\left(x+1\right).Q\left(x\right)+ax+b\)
đẳng thức trên đúng với mọi x, nên thay lần lượt x = 1 và x = -1 ta được
\(\hept{\begin{cases}f\left(1\right)=0.2.Q\left(x\right)+a+b=2\\f\left(-1\right)=0\left(-2\right).Q\left(x\right)-a+b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=2\\b-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)
vậy đa thức f(x) chia đa thức x2 - 1 có số dư là x + 1
Bn ko biết là đúng rùi!Đây là định lý nâng cao của lớp 8
Lời giải:
Áp dụng định lý Menelaus cho tam giác $CNB$ có $A,M,D$ thẳng hàng:
$\frac{DC}{DB}.\frac{MN}{MC}.\frac{AB}{AN}=1$
Mà $M$ là trung điểm $CN$ nên $MM=MC$
$\Rightarrow \frac{DC}{DB}.\frac{AB}{AN}=1$
$\Leftrightarrow \frac{AB}{AN}=\frac{DB}{DC}$ (đpcm)