K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

(Đây là mẹo khi làm những dạng bài cm vô nghiệm:thường ta sẽ tách đôi hạng tử  bậc lẻ ( ở đa thức này là -3x) và biến đổi thành bình phương của 1 số cộng với 1 số khác lớn hơn 0)

Cách làm nó như thế này:

Ta có : A =  x^2 - 3x +5

= x^2 - 3/2.x - 3/2.x + 5

= x(x-3/2)  - 3/2.x + 5

( lúc này để có bình phương, ta sẽ tách thằng 5 ra.)

A= x(x-3/2) - 3/2. x  +(3/2. 3/2 + 3,75)

= x(x-3/2) - 3/2(x-3/2) + 3,75

=(x-3/2)^2 + 3,75

=> A >0

Vậy đa thức A vô nghiệm

15 tháng 5 2017

Cho 2x-3 =0

=> 2x-3 =0

2x=3

x= 3/2

19 tháng 4 2020

\(x^2+x+2=x^2+2.x+1+1-x=x^2+2.x.1+1^2+1-x\)

\(=\left(x+1\right)^2+1-x\)

Mk chỉ lm đc vậy thôi

19 tháng 4 2020

\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}\)

\(=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

\(\Rightarrow\)Đa thức đã cho vô nghiệm ( đpcm )

6 tháng 8 2019

\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)

\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)

\(4x-3-2\left(5-3x\right)+2=0\)

\(4x-1-2\left(5-3x\right)=0\)

\(4x-1-10+6x=0\)

\(10x-11=0\)

\(10x=0+11\)

\(10x=11\)

\(x=\frac{11}{10}\)

19 tháng 4 2021

\(a)\)\(Cho\)\(x^2+3=0\)

                   \(x^2\)      \(=0-3\)

                   \(x^2\)        \(=-3\)( vô lý ) 

Vì: Mũ chẵn chuyển thành số âm

=> Đa thức vô nghiệm

\(b)\)\(Cho\)\(-3x^4-5=0\)

                    \(-3x^4\)     \(=0+5\)

                    \(-3x^4\)     \(=5\)

                           \(x^4\)     \(=5:\left(-3\right)\)

                           \(x^4\)     \(=\frac{-5}{3}\)( Vô lý )

Vì: Mũ chẵn chuyển thành số không âm

=> Đa thức vô nghiệm

6 tháng 5 2018

ta có :\(^{3x^2-6x\ge0}\)
          15 >0
=}\(^{3x^2-6x+15\ge15}\)
=}đa thức \(3x^2-6x+15\)vô nghiệm

k giùm mình nhé

6 tháng 5 2018

=(3x2-3x)-(3x+3)+12

=3x(x-1)-3(x-1)+12

=(x-1)(3x-3)+12

=(x-1).3.(x-1)+12

=3.(x-1)2+12

Ta có: 3.(x-1)2\(\ge\)0,\(\forall x\)12>0

=>3(x-1)2+12>0

Vậy đa thức trên vô nghiệm

`@` `\text {Ans}`

`\downarrow`

`a)`

Để `x=1` là nghiệm của đa thức, `x=1` phải t/m giá trị của đa thức `=0`

`m*1^2+3*1+5 =0`

`m+3+5=0`

`m+8=0`

`=> m=0-8`

`=> m=-8`

Vậy, để đa thức nhận `x=1` là nghiệm, thì `m` thỏa mãn giá trị là `m=-8`

`b)`

Thay `x=1` vào đa thức:

`6*1^2+m*1-1`

` =6+m-1`

` =6-1+m`

`= 5+m`

`5+m=0`

`=> m=0-5`

`=> m=-5`

Vậy, để đa thức trên nhận `x=1` là nghiệm, thì `m` thỏa mãn giá trị `m=-5`

`c)`

Thay `x=1` vào đa thức:

`1^5-3*1^2+m`

`= 1-3+m`

`= -2+m`

`-2+m=0`

`=> m=0-(-2)`

`=> m=0+2`

`=> m=2`

Vậy, để `x=1` là nghiệm của đa thức thì giá trị của `m` thỏa mãn `m=2.`

`\text {#KaizuulvG}`