K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

a) 6x - x2 - 5

= -x2 + 6x - 9 + 4

= -( x2 - 6x + 9 ) + 4

= -( x - 3 )2 + 4 ≤ 4 ∀ x ( chưa kl luôn âm được :)) )

13 tháng 9 2018

câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x 

câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x

13 tháng 9 2018

2 câu cuối ko rõ đề

5 tháng 8 2020

\(A=x^2+2x+2=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1>0\)

\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

tự làm tiếp đi chị

8 tháng 9 2019

a) \(P=2x-x^2-2\)

\(=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\)

Vì \(-\left(x-1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x-1\right)^2-1\le0-1;\forall x\)

Hay \(P\le-1< 0;\forall x\)

Vậy biểu thức P luôn có giá trị âm với mọi x

b)  \(Q=-x^2-y^2+8x+4y-21\)

\(=-\left(x^2-8x+16\right)-\left(y^2-4y+4\right)-1\)

\(=-\left(x-4\right)^2-\left(y-2\right)^2-1\)

Vì \(\hept{\begin{cases}-\left(x-4\right)^2\le0;\forall x,y\\-\left(y-2\right)\le0;\forall x,y\end{cases}}\)

\(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2\le0;\forall x,y\)

\(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2-1\le0-1;\forall x,y\)

Hay \(Q\le-1< 0;\forall x,y\)

Vậy biểu thức Q luôn âm với mọi gt của x,y

link tham khảo 

link https://olm.vn/hoi-dap/detail/83120416222.html

hok tốt

16 tháng 7 2021

mng giúp e với ặk

13 tháng 9 2018

a) \(9x^2-6x+2=\left(9x^2-6x+1\right)+1\)

\(=\left(3x-1\right)^2+1>0\)

b) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

c) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)

2)

\(-9x^2+12x-15=-\left(9x^2-12x+15\right)\)

\(=-\left(9x^2-12x+4+11\right)\)

\(=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le-11< 0\)

13 tháng 9 2018

bn ơi bài này hình như cần ns khi nào x=0 nữa chứ pải k?

30 tháng 6 2021

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

1 tháng 8 2016

ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi

a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0

b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)

25 tháng 3 2023

ai giúp tui vs 

 

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

BPT thì làm sao gọi là luôn dương hả bạn? Đề phải là CMR các BPT sau luôn đúng với mọi $x$.

1. 

Ta có: $2x^2-2x+17=x^2+(x^2-2x+1)+16=x^2+(x-1)^2+16\geq 16>0$ với mọi $x\in\mathbb{R}$

Do đó BPT luôn đúng với mọi $x$

2.

$-x^2+6x-18=-(x^2-6x+18)=-[(x^2-6x+9)+9]=-[(x-3)^2+9]$

$=-9-(x-3)^2\leq -9<0$ với mọi $x\in\mathbb{R}$

Vậy BPT luôn đúng với mọi $x$

3.

$|x-1|+|x|+2\geq 0+0+2=2>1$ với mọi $x\in\mathbb{R}$

Do đó BPT luôn đúng với mọi $x$