Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a-b\right)^3\cdot\left(a+b\right)\)
Ta có
$$a^2+b^2+c^2-ab-bc-ca=0,$$
hay $$\dfrac{1}{2}\left[(a-b)^2+(b-c)^2 +(c-a)^2\right[ = 0.$$
Mà vế trái luôn không âm \(\forall a,b,c \in \mathbb{R}\), đẳng thức xảy ra khi $a=b=c.$
Vậy ta có điều cần chứng minh.
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
a2+b2>=2ab
b2+c2>=2bc
c2+a2>=-2ac
Cộng 2 vế với nhau:
a2+b2+c2>= ab+bb-ca
Vì ab + bc + ca = 1 nên
a 2 + 1 = a 2 + ab + bc + ca = a(a + b) + c(a + b) = (a + c)(a + b)
b 2 + 1 = b 2 + ab + bc + ca = b(a + b) + c(a + b) = (b + c)(a + b)
c 2 + 1 = c 2 + ab + bc + ca = ( c 2 + bc) + (ab + ac)
= c(c + b) + a(b + c) = (a + c)(b + c)
Từ đó suy ra ( a 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 )
= (a + c)(a + b).(b + c)(a + b).(a + c)(b + c)
= ( a + c ) 2 ( a + b ) 2 ( b + c ) 2
Vậy ( a 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 ) = ( a + c ) 2 ( a + b ) 2 ( b + c ) 2
Đáp án cần chọn là: D
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)
=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)
=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]
vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Đề bài sai, phản ví dụ: \(a=b=0,c=1\)
BĐT này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
Xét hiệu:
a2 + b2 + c2 - ab - bc - ca
= 1 2 (2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca)
= 1 2 [(a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2)]
= 1 2 [(a - b)2 + (b - c)2 + (c - a)2] ≥ 0
(vì (a - b)2 ≥ 0; (b - c)2 ≥ 0; (c - a)2 ≥ 0 với mọi a, b, c)
Nên a2 + b2 + c2 ≥ ab + bc + ca.
Dấu “=” xảy ra khi a = b = c.
Đáp án cần chọn là: B
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac>=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)