Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H(x)=4x^8-20x^6-7x^4-x^2-65-4x^7-63x^5+60x+42+x^3
=4x^8-4x^7-20x^6-63x^5-7x^4+x^3-x^2+60x-23
=>Hệ số tự do là -23
Câu 1: A
Câu 2: B
Câu 3: D
Câu 4: A
Câu 5: C
Câu 6: B
Câu 7: A
Câu 8: C
Câu 1 : A
Câu 2 : B
Câu 3 : D
Câu 4 : A
Câu 5 : C
Câu 6 : B
Câu 7 : A
Câu 8 : C
HT
Bài 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{8}=\dfrac{a+b+c}{4+5+8}=\dfrac{68}{17}=4\)
Do đó: a=16; b=20; c=32
Ta có: \(\left\{{}\begin{matrix}\left(x+5\right)^2\ge0\forall x\\\left|x-y+1\right|\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left(x+5\right)^2+\left|x-y+1\right|\ge0\forall x,y\)
\(\Rightarrow-\left[\left(x+5\right)^2+\left|x-y+1\right|\right]\le0\forall x,y\)
\(\Rightarrow-\left(x+5\right)^2-\left|x-y+1\right|\le0\forall x,y\)
\(\Rightarrow P=-\left(x+5\right)^2-\left|x-y+1\right|+2018\le2018\forall x,y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x+5=0\\x-y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\y=x+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-4\end{matrix}\right.\)
Vậy \(Max_P=2018\) khi \(x=-5;y=-4\).
$Toru$
Câu 11:
\(C=\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\dfrac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\\ =\dfrac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\dfrac{1}{\left|x-2017\right|+2019}\\ =1-\dfrac{1}{\left|x-2017\right|+2019}\)
Ta có: \(\left|x-2017\right|\ge0\forall x\Rightarrow\left|x-2017\right|+2019\ge2019\forall x\)
\(\Rightarrow\dfrac{1}{\left|x-2017\right|+2019}\le\dfrac{1}{2019}\forall x\)
\(\Rightarrow C=1-\dfrac{1}{\left|x-2017\right|+2018}\ge1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
Dấu "=" xảy ra khi: \(x-2017=0\Rightarrow x=2017\)
vậy: ...