Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n=chẵn
=> 2k.(2k+3)
=>2k.2k+2k.3
=>k.k+2k.3.2.2
=>k.k+k.2.2.2.3
=>k.k+k.24
=>k.2+k.12.2 chia hết cho 2 => n.(n+3) là bội của 2
n=lẻ
=>(2k+1).(2k+1+3)
=>(2k+1).(2k+4)
=>(k+1).(2k+4).2
=>(k+1).(2k+4) .2 chia hết cho 2
=>
=>n.(n+3) là bội của 2
a: Số số hạng của A là:
(2n+1-1):2+1=n+1(số)
Số số hạng của B là;
(2n-2):2+1=n(số)
b: A=(2n+1+1)(n+1)/2=(n+1)^2 là số chính phương
c: C=(2n+2)*n/2=n(n+1) chỉ có thể là số chính phương khi n=0 thôi
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
\(n^2+6\)
\(=n^2+2+4\)
\(=\left(n^2+2\right)+4\)
Giả sử n^2 +2 +4\(⋮4\)
\(\Rightarrow n^2+2⋮4\)
Vì 2 không chia hết cho 4 nên để n^2 +2 chia hết cho 4
\(\Rightarrow n^2=4k-2\left(k\inℕ^∗\right)\)
Vì n^2 ko có dạng 4k-2
=> n^2 khác 4k-2
hay n^2 +6 không là bội 4
do n là số tự nhiên suy ra n^2 là số chính phương, mà số chính phương khi chia 4 dư 0 hoặc 1
suy ra n^2 chia 4 dư 0 hoặc 1\(\Rightarrow\orbr{\begin{cases}n^2=4k\\n^2=4k+1\end{cases}}\left(k\in N\right)\)
\(\Rightarrow\orbr{\begin{cases}n^2+6=4k+6=4\left(k+1\right)+2\\n^2+6=4k+1+6=4\left(k+1\right)+3\end{cases}}\)
Do \(k\in n\Rightarrow k+1\in n\Rightarrow4\left(k+1\right)⋮4\)
\(\Rightarrow\)4(k+1)+2không chia hết cho 4 và 4(k+1)+3 khoong chia hết cho 4
suy ra n^2 +6 không cia hết cho 4
suy ra n^2+6 không phải là bội của 4