Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN của tử và mẫu
12n+1 chia hết cho d 60n+5 chia hết cho d
=>
30n+2 chia hết cho d 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
d thuộc Ư(1)=1
ƯCLN(12n+1;30n+2)=1
Vậy 12n+1/30n+2 là p/s tối giản
a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :
12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d
30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d
-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d
=> 1 chia hết cho d
vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau
=> \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Đề thiếu rồi phải là $30n+2$
Gọi $ƯCLN(12n+1,30n+2)=d(d>0)(d \in N)$
$\to \begin{cases}12n+1 \vdots d\\30n+2 \vdots d\\\end{cases}$
$\to \begin{cases}60n+5 \vdots d\\60n+4 \vdots d\\\end{cases}$
$\to 60n+5-60n-4 \vdots d$
$\to 1 \vdots d$
$\to d=1$
Vậy ƯCLN(12n+1,30n+2)
1/1.2 +1/2.3 +1/3.4 +...+ 1/49.50
=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
=1-1/50<1
1/1.2 + 1/2.3 +1/3.4 + ... + 1/49.50 ( chỗ này 49.50 chứ ko phải 49+50 đâu nha)
= 1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50 (-1/2+1/2 là hết cứ như z thì chỉ còn lại 1-1/50)
=1-1/50 <1
Gọi UCLN(2n +5; 3n +7) là d \(\left(d\ge1\right)\)
=> 2n +5 chia hết cho d ; 3n+7 chia hết cho d
=> 3n+7 - (2n+5) = n + 2 chia hết cho d
=> 2n+4) chia hết cho d
mà 2n+5 = (2n+4) +1 chia hết cho d
=> 1 chia hết cho d
=> \(d\le1\)mà \(d\ge1\)=> d = 1
Vậy UCLN(2n+5 ; 3n+7) = 1
Gọi d làƯCLN (2n + 5; 3n + 7)
=> 2n + 5 chia hết cho d => 3.(2n + 5) = 6n + 15 chia hết cho d (1)
=> 3n + 7 chia hết cho d => 2.(3n + 7) = 6n + 14 chia hết cho d (2)
Từ (1) và (2) => (6n + 15) - (6n + 14) = 6n + 15 - 6n - 14 = 1 chia hết cho d
=> d = 1
=>ƯWCLN (2n + 5; 3n + 7) = 1 (Đpcm).
1+1²+1³+...+1^2004
=1+1+1+...+1
=2014.1=2014 không chia hết cho 4 bạn xem lại xem
Ta có: n2 + n + 1 = n(n + 1) + 1
Ta có n(n + 1) ⋮ 2 vì n(n + 1) là tích của hai số tự nhiên liên tiếp.
Mà 1 không chia hết cho 2
Do đó n(n + 1) + 1 không chia hết cho 2.
Dễ lắm, bạn thử suy nghĩ đi!