K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Đáp án:

Giải thích các bước giải:

a) thay m= -3; n= -4 vào pt ta có:

x2-3x-4=0

Δ= b2-4ac=(−3)2-4.1.(-4)=25>0

vậy pt có 2 nghiệm phân biệt:

x1= −b−√Δ2a=3−√252.1=−1

x2= −b+√Δ2a=3+√252.1=4

Học tốt ; ko bt đúng hay ko

4 tháng 3 2022

mày lớp mấy

4 tháng 3 2022

\(a)\) \(Thay\) \(x=2\) \(\text{ vào }\)\(PT:\)

\(2m-3=2m-2-1.\\ \Leftrightarrow2m-3-2m+2+1=0.\)

\(\Leftrightarrow0=0\) (luôn đúng).

\(\Rightarrow\) PT luôn nhận x = 2 làm nghiệm với mọi giá trị của m.

2 tháng 3 2018

câu 1,

a, 2(m-1)x +3 = 2m -5

<=> 2x (m-1) - 2m +8 = 0  (1)

Để PT (1) là phương trình bậc nhất 1 ẩn thì:  m - 1 \(\ne\)0 <=> m\(\ne\)1

b, giải PT: 2x +5 = 3(x+2)-1

<=> 2x + 5 -3x -6 + 1 =0

<=> -x = 0

<=>  x = 0

Thay vào (1) ta được: -2m + 8 =0

<=> -2m = -8

<=> m = 4 (t/m)

vậy m = 4 thì pt trên tương đương.................

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Câu 1)

Ta có: \(mx-3=2m-x-1\)

\(\Leftrightarrow xm-3-2m+x+1=0\)

\(\Leftrightarrow m(x-2)+x-2=0\)

\(\Leftrightarrow (m+1)(x-2)=0\)

Để đẳng thức trên đúng với mọi $m$ thì \(x-2=0\Leftrightarrow x=2\)

Do đó với mọi $m$ thì pt nhận $x=2$ là nghiệm

Câu 2:

Gọi hai số chính phương liên tiếp là \(a^2, (a+1)^2\)

Theo đề bài ta phải cm \(A=a^2+(a+1)^2+a^2(a+1)^2 \) là scp lẻ.

Thật vậy:

\(A=a^2+a^2+2a+1+a^2(a^2+2a+1)\)

\(A=a^4+2a^3+3a^2+2a+1\)

\(A=(a^2)^2+a^2+1+2a^2.a+2a^2.1+2a.1=(a^2+a+1)^2\)

Mà \(a^2+a+1=a(a+1)+1\) lẻ do $a(a+1)$ chẵn.

Do đó $A$ là scp lẻ. Ta có đpcm.

18 tháng 4 2018

cám ơn nhiều nha!

11 tháng 5 2020

Tui hổng biết

11 tháng 5 2020

Tui hổng biết

12 tháng 5 2018

b) với x=2 ta có:

VT: \(2m-3\)

VP:\(2m-2-1=2m-3\)

vì VT=VP=\(2m-3\) nên phương trình \(mx-3=2m-x-1\) luôn có nghiệm x=2 đúng với mọi m\(\in R\)

12 tháng 5 2018

a) ta thấy rằng với mọi x\(\le0\) thì \(\left|x\right|=-x\)

do đó ta có VT \(x+\left|x\right|=x-x=0=VP\)

vậy phương trình luôn có nghiệm đúng với mọi x\(\le0\) (đpcm)