Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) cho 1 số tự nhiên a bất kì thì 4 số TN liên tiếp là a -> a+ 1 ; a + 2 ; a + 3
tổng = a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4(a + 1) + 2 chia 4 dư 2
hoặc cho 1 số tự nhiên a - 1 bất kì thì 4 số TN liên tiếp là a - 1 -> a ; a + 1 ; a + 2
tổng = a - 1 + a + a + 1 + a + 2 = 4a + 2 chia 4 dư 2
=> dù cho chọn 4 số TN Liên tiếp thì tổng của chúng khi chia 4 luôn dư 2
bài này trong sbt 6 giữa giai xem mà mấy bài này gọi a là ra dễ lắm
Ta có : 22019 - 2 = 2.(22018 - 1)
= 2.[(2 + 22 + 23 + .... + 22018) - (1 + 2 + 22 + ... + 22017)]
= 2.[2.(1 + 22 + 23 + ... + 22017 - (1 + 2 + 22 + .... + 22017)]
= 2.(1 + 2 + 22 + 23 +.. + 22016 + 22017)
= 2.[(1 + 2) + (22 + 23 )+.... + (22016 + 22017)]
= 2.[(1 + 2) + 22.(1 + 2) + ... + 22016.(1 + 2)]
= 2.(3 + 22.3 + ... + 22016.3
= 2.3.(1 + 22 + ... + 22016) \(⋮\)3
=> 22019 - 2 \(⋮\)3 (đpcm)
Gọi 3 STN liên tiếp là : a,a+1,a=2(a thuộc N )
Khi chia a cho 3 thì a sẽ có dạng 3k,3k+1,3k+2(k thuộc N )
+ Nếu a=3k thì a : 3 ( thay : cho chia hết )
a+1 :/ 3 ( thay :/ cho ko chia hết )
a+2:/3
+Nếu a=3k+1 thì a:/ 3
a+1 =3k+1+1=3k+2 :/ 3
a+2=3k+2+1= 3k+3:3
+ Nếu a=3k+2 thì a:/3
a=3k+1=3k+1+2=3k+3:3
a=3k+2=3k+2+2=3k+a:/3
Vậy ...................................
Nhớ câu kia cũng tương tự vậy mà làm
\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3
Nếu trong a,b có 1 số chẵn
=> Bài toán được chứng minh
Nếu a,b đều là số lẻ
a + b là số chẵn
=> Bài toán được chứng minh
=> Điều phải chứng minh
Giả sử a = 1
111 không chia hết cho 33
Vậy đề bạn chưa đúng
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
1,
a, Ta có: A = 2 + 22 + 23 +.......+ 210
= ( 2 + 22 ) + ( 23 + 24 ) +...... + ( 29 + 210 )
= 6 + 23 . ( 2 + 22 ) +... + 29 . ( 2 + 22 )
= 6 + 23 . 6 + ......... + 29 . 6
= 6 . ( 2 + 22 + 23 +......+ 29 ) chia hết cho 3 ( Vì 6 chia hết cho 3, nên 6k chia hết cho 3 )
=> A chia hết cho 3
b, Tương tự ta làm tiếp với ý b