Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=n^3(n^2−7)^2−36n
n[n^2(n^2−7)^2−36]
= n.[(n^3−7n)^2−6^2]
= n(n^3−7n−6)(n^3−7n+6)
=(n−3)(x−2)(n−1)n(n+1)(n+2)(n+3)
M luôn chia hết cho 2;3;5. Các số này đôi 1 nguyên tố cùng nhau => B chia hết cho 105
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
B = n3(n2-7)^2-36n
= n3(n4-14n2+49)-36n
= n7 - 14n5 + 49n3 - 36n
= n(n6 - 14n4 +49n2 -36)
= n(n6 - n5 + n5 - n4 - 13n4 + 13n3 - 13n3 + 13n2 + 36n2 - 36n + 36n - 36)
= n[n5(n-1)+n4(n-1)-13n3(n-1)-13n2(n-1)+36n(n-1)+36(n-1)]
= n(n-1)(n5+n4-13n3-13n2+36n+36)
= n(n-1)[n4(n+1)-13n2(n+1)+36(n+1)]
= n(n-1)(n+1)(n4-13n2+36)
= n(n-1)(n+1)(n4-9n2-4n2+36)
= n(n-1)(n+1)[n2(n2-9)-4(n2-9)]
= n(n-1)(n+1)(n2-9)(n2-4)
= n(n-1)(n+1)(n-3)(n+3)(n-2)(n+2)
= (n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)
Có \(B⋮3\); \(B⋮5\);\(B⋮7\)(vì có 7 số tự nhiên liên tiếp)
Mà 3; 5; 7 đôi một nguyên tố cùng nhau
\(\Rightarrow B⋮3.5.7\Rightarrow B⋮105\)(đpcm)
\(A=n\left(n^2\left(n^2-7\right)^2-36\right)=n\left(\left(n^3-7n\right)^2-36\right)\)
\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-2\right)\left(n-1\right)\)
\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow A\) là tích của 7 số nguyên liên tiếp \(\Rightarrow A\) chia hết cho \(3;5;7;8\Rightarrow A⋮840\)
Xét \(5040=2^4.3^2.5.7\)
Phân tích:
\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
Ta có:
\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)
\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)
Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:
- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)
- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)
- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)
- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)
A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\left(n-1\right)\left(n+3\right)\)
\(\Rightarrow A\) là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7