Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài sai rồi ko có chữ chẳng còn nếu sai thật thì 2 số liên tiếp có 1 số chắn và 1 số lẻ nên 2 số là 2 số nguyên tố cung nhau ai tivk mình sẽ may mắn
Ơ , mình giải lộn nhỉ?
Giải
Số tự nhiên đầu có dạng: 2k + 1 , số tiếp theo dạng 2k + 2
Vậy tổng trên có dạng là:
2k + 1 + 2k + 2 = 4k + 3 = 3(k + 1)
Vì 3(k + 1) là số lẻ
Ta có ĐPCM
b) gọi 3 số đó là a;b;c ta có :
a:3 = ?(dư 1)
b:3=(?(duw2)
c:3 = ?(dư 0)
=> a+b+c :3 (dư 0)
gọi 2 số đó là a và a + 2
ta có: a + a + 2 = 2a + 2
mà 2a là số chẵn nên 2a + 2 cũng là số chẵn
=> a + a + 2 chẵn
=> đpcm
t i c k nhé!!! 45645676578769
Gọi dãy số lẻ liên tiếp là \(1;3;5;...;2k+1\)trong đó \(k\in N\)*.
Số các số hạng :
\(\frac{\left(2k+1\right)-1}{2}+1=\frac{2k}{2}+1=k+1\)(số )
Tổng là :
\(\frac{\left(k+1\right)\left[1+\left(2k+1\right)\right]}{2}\)
\(=\frac{\left(k+1\right)\left(2k+2\right)}{2}\)
\(=\left(k+1\right).\frac{2\left(k+1\right)}{2}\)
\(=\left(k+1\right)^2\)
Vậy ...
a) Goi :3 số tự nhiên liên tiếp la : n, n+1, n+2
=> tổng : n+n+1+n+2 = 3n+3 = 3(n+1) chia hết cho 3 Vậy : tổng của ba số tự nhiên liên tiếp chia hết cho 3
b) Goi 2 so le lien tiep co dang 2k+1 va 2k+3
Gọi D là ước số chung của chúng.
Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D
Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D
Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ
.Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!
chúc bạn học tập tốt !!!
gọi 2 số lẻ liên tiếp lần lượt là 2k+1 và 2k+3
ta có 2k+1+2k+3=4k+4=4(k+1) chia hết cho nên là bộ của 4 hay tổng của hai số le liên tiếp là bội của 4
hai số lẻ liên tiếp này là số nguyên nếu là số thập phân hay phân số thì chưa chắc
Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3 ( k thuộc N )
Ta có: 2k + 1 + 2k + 3
= 2 . 2k + 4
= 4k + 4
Ta có: 4k chia hết cho 4
4 chia hết cho 4
Suy ra, 4k + 4 chia hết cho 4.
Vậy tổng hai số lẻ liên tiếp là bội của 4
dễ, gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3 (k thuộc N)
gọi d là UCLN(2k+1;2k+3) suy ra:2k+1chia hết cho d;2k+3 chia hết cho d suy ra : (2k+3)-(2k+1) chia hết cho d suy ra: 2 chia hết cho d suy ra d thuộc tập hợp Ư(2) suy ra d thuộc {1;2}
nhưng vì 2k+1;2k+3 là số lẻ nên không chia hết cho 2 suy ra d=1
VẬY:HAI SỐ LẺ LIÊN TIẾP NGUYÊN TỐ CÙNG NHAU
gọi 2 số đó là: 2a+1;2a+3 (a thuộc N)
ta có:
(2a+1)+(2a+3)=2a+1+2a+3=(2a+2a)+(1+3)=4a+4=4.(a+1) là số chẵn
=> điểu phải chứng minh
gọi 2 số đó là 2k+1;2k+3.theo bài ra ta có:
2k+1+2k+3=4k+4=4(k+1) là số chẵn
=>đpcm
Số lẻ thứ nhất có dạng 2.k + 1, số lẻ liền sau là 2.k + 3.
Tổng là: 2.k + 1 + 2.k + 3 = 4.k + 4 = 4.(k+1) chia hết cho 2 vì 4 chia hết cho 2.