K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^2}+....+\frac{100}{2^{100}}\)

\(\Rightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{100}{2^{99}}-\frac{1}{2}-\frac{2}{2^2}-...-\frac{100}{2^{100}}\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)(3)

Đặt \(P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)(2)

\(\Rightarrow2P=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}\)

\(\Rightarrow2P-P=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}-1-\frac{1}{2}-...-\frac{1}{2^{99}}\)

\(\Rightarrow P=2-\frac{1}{2^{99}}< 2\)(1)

Từ (1),(2),(3) => A<2

17 tháng 6 2019

Giải

Ta có A =1/2 +  2/2^2 + 3/2^3 + ... + 100/2^100

=> 2A = 1 + 2/2 + 3/2^2 + ... + 100/2^99

=> 2A - A = 1 + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99 - 100/2^100

=> A = ( 1 - 100/2^100) + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99 (*)

Đặt B = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99

=> 2B = 1 + 1/2 + 1/2^2 + ... + 1/2^98

=> 2B - B = 1 - 1/2^99

=> B = 1 - 1/2^99

Thay B vào (*) ta được:

A = ( 1 - 100/2^100 ) + ( 1 - 1/2^99 )

A = 2 - ( 100/2^100 + 1/2^99 ) < 2

=> A < 2 (đpcm)

28 tháng 6 2017

10 tháng 1 2017

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

26 tháng 7 2019

Lời giải:

a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)

Vậy: \(A>\frac{1}{2}\)

b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)

\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{​​}\text{​​}\text{​​}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)

=> \(B\text{​​}\text{​​}\text{​​}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)

Vậy: \(B>1\)

c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)

Vậy: \(C< 2\)

hahaChúc bạn học tốt!hihaTick cho mình nhé!eoeo

14 tháng 5 2022

\(A.x=x+x^2+x^3+...+x^{101}\)

\(A.x-A=x^{101}-1\Rightarrow A\left(x-1\right)=x^{101}-1\)

\(\Rightarrow A=\dfrac{x^{101}-1}{x-1}\)

 

16 tháng 8 2023

Bài 1:

13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)

13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)

13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)

13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp

 

16 tháng 8 2023

Bài 2:

1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)

100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)

1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)

107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)

11 + 112 + 113 = \(\overline{..1}\)\(\overline{..1}\)\(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)

 

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)