K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

Ta có: A = 6 + 62 + 63 + 64 + .... + 630 (có 30 số hạng)

A = (6 + 62 + 63) + (64 + 65 + 66) + ... + (628 + 629 + 630)

A = 6(1 + 6 + 62) + 64(1 + 6 + 62) + ... + 628(1 + 6 + 62)

A = 6.43 + 63.43 + ... + 628. 43

A = 43(6 + 63 + ... + 628\(⋮\)43

28 tháng 4 2020

có A = 6 + 6^2 + 6^3 + 6^4 + ... + 6^30 ( có 30 số hạng )

A = ( 6 + 6^2 + 6^3 ) + ... + ( 6^28 + 6^29 + 6^30 ) ( có 10 nhóm )

A = 6( 1 + 6 + 6^2 ) + ... + 6^28( 1 + 6 + 6^2 )

A = ( 1 + 6 + 6^2 )( 6 + ... + 6^28 )

A = 43( 6 + .... + 6^28 )

có 43 chia hết cho 43 +> A chia hết cho 43 ( điều phải chứng minh )

23 tháng 7 2018

Nếu n là số lẻ => n+3 là số chẵn => (n+3) (n+6) chia hết cho 2

Nếu n là số chẵn => n+6 là số chẵn => (n+3) (n+6) chia hết cho 2

 => (n+3) (n+6) chia hết cho 2 với mọi STN n

23 tháng 7 2018

Một lần nữa xin cảm ơn bạn ( le anh tu ) nhiều . 

Thank you very very much .

Kết bạn nhé .

15 tháng 10 2019

Bài 1

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là

n+n+1+n+2=3n+3=3(n+1) chia hết cho 3

Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là

n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2

Bài 2

(Xét tính chẵn hoặc lẻ của n)

+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2

+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2

=> (n+3)(n+6) chia hết cho 2 với mọi n

15 tháng 11 2021

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.

Ta có :

E = 62 + 63 + 64 + ... + 661

=> E = ( 62 + 63 ) + ( 64 + 65 ) + ... + ( 660 + 661 )

=> E = ( 62 + 63 ) + 62 . ( 62 + 63 ) + ... + 658 . ( 62 + 63 )

=> E = 252 + 62 . 252 + ... + 658 . 252

=> E = 7 . 36 + 62 . 7 . 36 + ... + 658 . 7 . 36

=> E = 7 . ( 36 + 62 . 36 + ... + 658 . 36 ) ⋮ 7

Ta có :

E = 62 + 63 + 64 + ... + 661 ( có 20 số hạng )

=> E = ( 62 + 63 + 64 ) + ( 65 + 66 + 67 ) + ... + ( 659 + 660 + 661 ) ( có đủ 20 nhóm )

=> E = ( 62 + 63 + 64 ) + 63 . ( 62 + 63 + 64 ) + ... + 657 . ( 62 + 63 + 64 )

=> E = 1548 + 63 . 1548 + ... + 657 . 1548

=> E = 36 . 43 + 63 . 36 . 43 + ... + 657 . 36 . 43

=> E = 43 . ( 36 + 63 . 36 + ... + 657 . 36 ) ⋮ 43

15 tháng 11 2021

1)  A=62020+62021+62022+62023

    A= ( 62020+62021) +  ( 62022+62023)

    A= 62020.( 1+6) + 62022.( 1+6)

    A= 62020.7+62022.7

    A= 7.( 62020+62022)

Vì 7 chia hết cho 7 => 7.(62020+62022) chia hết cho 7 hay A chia hết cho 7.

Vậy A chia hết cho 7

    _HT_

15 tháng 11 2021

2)  1+2+3+...+n=1275

Ta thấy dãy số trên là dãy số cách đều nên có khoảng cách là 1 đơn vị 

=> Dãy số trên có n số hạng

Tổng của dãy số trên là :   (n+1).n:2 = 1275

                                          (n+1).n= 1275.2=2550

Mà n và n+1 là 2 số tự nhiên liên tiếp => (n+1).n = 51.50

=> n=50 ( vì n< n+1)

  Vậy n=50

_HT_

21 tháng 12 2015

A=4+42+43+44+45+46+47+48+49

A=(4+42+43)+(44+45+46)+(47+48+49)

A=4.(1+4+42)+44.(1+4+42)+47.(1+4+42)(cho viet lien la dau nhan)

A=4.21+44.21+47.21

A=4.3.7+44.3.7+47.3.7

A=(4+44+47).3.7chia het cho ca 3 va 7

vậy A chia hết cho cả 3 và 7

17 tháng 7 2021

Ta có: \(\left(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{9}\right)>\dfrac{1}{9}.6=\dfrac{6}{9}>\dfrac{1}{2}\)  (1)

\(\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{19}\right)>\dfrac{1}{19}.10=\dfrac{10}{19}>\dfrac{1}{2}\)  (2)

\(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{19}>\left(1\right)+\left(2\right)\)

\(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{19}>1\left(đpcm\right)\)

 

 

17 tháng 7 2021

gừ ... gừ sợ chưa

 

31 tháng 10 2019

\(=2^{34}\left(2^3+1\right)=\left(2^2\right)^{17}.9=4^{17}.3^2\)

Biểu thức trên chia hết cho 12 khi đồng thời chia hết cho cả 3 và 4

Ta thấy 417 chia hết cho 4 và 32 chia hết cho 3 => biểu thức trên đồng thời chia hết cho 3 và 4 nên nó chia hết cho 12

2 tháng 11 2019

Thanks bn nhiều nhiều :3