Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=5\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\right)=\)
\(=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\)
\(=5\left(1-\dfrac{1}{50}\right)\)
Ta có
\(1-\dfrac{1}{50}< 1\Rightarrow5\left(1-\dfrac{1}{50}\right)< 5\left(dpcm\right)\)
a) \(\dfrac{13}{20}+\dfrac{3}{5}+x=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{5}{4}+x=\dfrac{5}{6}\)
\(\Rightarrow x=\dfrac{5}{6}-\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{-5}{12}\)
b) \(x+\dfrac{1}{3}=\dfrac{2}{5}-\dfrac{-1}{3}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{11}{15}\)
\(\Rightarrow x=\dfrac{11}{15}-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{5}\)
c)\(\dfrac{-5}{8}-x=\dfrac{-3}{20}-\dfrac{-1}{6}\)
\(\dfrac{-5}{8}-x=\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-5}{8}-\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-77}{120}\)
d) \(\dfrac{3}{5}-x=\dfrac{1}{4}+\dfrac{7}{10}\)
\(\Rightarrow\dfrac{3}{5}-x=\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{3}{5}-\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{-7}{20}\)
e) \(\dfrac{-3}{7}-x=\dfrac{4}{5}+\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{-3}{7}-x=\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-3}{7}-\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-59}{105}\)
g) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(\Rightarrow\dfrac{-5}{6}-x=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-5}{6}-\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-13}{12}\)
Ta có : A=22+24+26+...+220
=(22+24)+(26+28)+...+(218+220)
=22(1+22)+26(1+22)+...+218(1+22)
=22.5+26.5+...+218.5 chia hết cho 5
Vậy A chia hết cho 5.
\(A=2^2+2^4+2^6..+2^{18}+2^{20}\)
\(\Leftrightarrow A=\left(2^2+2^4\right)+\left(2^6+2^8\right)+...+\left(2^{18}+2^{20}\right)\)
\(\Leftrightarrow A=20+2^4.\left(2^2+2^4\right)+...+2^{16}.\left(2^2+2^4\right)\)
\(\Leftrightarrow A=20+2^4.20+..+2^{16}.20\)
\(\Leftrightarrow A=20\left(1+2^4+..+2^{16}\right)\)
Vì \(20⋮5\)
\(\Rightarrow A=20\left(1+2^4+..+2^{16}\right)⋮5\)
Vậy \(A⋮5\)
hok tốt!!
a) \(0,6+\dfrac{2}{3}=\dfrac{6}{10}+\dfrac{2}{3}=\dfrac{3}{5}+\dfrac{2}{3}=\dfrac{9}{15}+\dfrac{10}{15}=\dfrac{19}{15}\)
b) \(-\dfrac{5}{12}+0,75=-\dfrac{5}{12}+\dfrac{75}{100}=-\dfrac{5}{12}+\dfrac{3}{4}=-\dfrac{5}{12}+\dfrac{9}{12}=\dfrac{4}{12}=\dfrac{1}{3}\)
c) \(\dfrac{1}{3}-\left(-0,4\right)=\dfrac{1}{3}+\dfrac{4}{10}=\dfrac{1}{3}+\dfrac{2}{5}=\dfrac{5}{15}+\dfrac{6}{15}=\dfrac{11}{15}\)
d) \(1\dfrac{3}{5}+\dfrac{5}{6}=\dfrac{8}{5}+\dfrac{5}{6}=\dfrac{48}{40}+\dfrac{25}{30}=\dfrac{73}{30}\)
a) \(\dfrac{3}{8}+\dfrac{15}{-25}+\dfrac{3}{5}\)
\(=\dfrac{-9}{40}+\dfrac{3}{5}\)
\(=\dfrac{3}{8}\)
b) \(\dfrac{-5}{18}+\dfrac{23}{45}-\dfrac{9}{10}\)
\(=\dfrac{7}{30}-\dfrac{9}{10}\)
\(=\dfrac{-2}{3}\)
c) \(\dfrac{-5}{12}+\dfrac{15}{18}-2,25\)
\(=\dfrac{5}{12}-2,25\)
\(=\dfrac{-11}{6}\)
d) \(\dfrac{5}{6}+\dfrac{2}{3}-0,5\)
\(=\dfrac{3}{2}-0,5\)
\(=1\)
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
ok:
(2x+24).53=4.55
(2x+24)=4.55:53
(2x+24)=4.52
(2x+24)=100
2x=100-16
2x=84
x=84:2
x=42
2x+24).53=4.55 (2x+24)=4.55:53 (2x+24)=4.52 (2x+24)=100 2x=100-16 2x=84 x=84:2 x=42
S= 5 + 52+53+...+52021
5S=52+53+54+...+52022
5S-S=52+53+...+52022-5-52-53-...-52021
4S=(52-52)+(53-53)+...+(52021-52021)+(52022-5)
4S=52022-5
=>4S+5=52022-5+5
=>4S+5=52022
Vậy 4S+5=52022
Sửa đề: A=5/2+5/6+...+5/2450
=5(1/2+1/6+...+1/2450)
=5(1-1/2+1/2-1/3+...+1/49-1/50)
=5*49/50<5