Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{47.50}\)
\(=\frac{4}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{47.50}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{47}-\frac{1}{50}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{5}-\frac{1}{50}\right)\)
\(=\frac{4}{3}.\left(\frac{10}{50}-\frac{1}{50}\right)\)
\(=\frac{4}{3}.\frac{9}{50}\)
\(=\frac{6}{25}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right).\left(3n+2\right)}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right).\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{3n+2}{2.\left(3n+2\right)}-\frac{2}{2.\left(3n+4\right)}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}=\frac{n}{2.\left(3n+2\right)}\)
\(B=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{26\cdot29}\)
\(B=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{29}\)
\(B=\dfrac{1}{2}-\dfrac{1}{29}\)
\(B=\dfrac{27}{58}\)
B= 3/2x5 + 3/5x8+ 3/8x11 + ... + 3/26x29
B= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/26 - 1/29
B= 1/2-1/29
B=27/58
\(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+....+\frac{1}{97\cdot100}\)
\(=\frac{5-2}{2\cdot5}+\frac{8-5}{5\cdot8}+\frac{11-8}{8\cdot11}+...+\frac{100-97}{97\cdot100}\)
\(=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{3}\cdot\frac{49}{100}=\frac{49}{300}\)
\(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{101}\right)\)
\(=2.\frac{96}{505}\)
\(=\frac{192}{505}\)
\(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{101}\right)\)
\(=2.\left(\frac{101}{505}-\frac{5}{505}\right)\)
\(=2.\frac{96}{505}\)
\(=\frac{192}{505}\)
Chúc bạn học tốt !!!
Bài 1
A= 3.4 + 4.5+ 5.6+ .......+ 58.59 + 69.60
3A = 3.4.3 + 4.5.3+ 5.6.3+ .......+ 58.59.3 +59.60.3
= 3.4.(5-2) + 4.5.(6-3)+ 5.6.(7-4)+ .......+ 58.59.(60-57) +59.60.(61-58)
= 3.4.5-2.3.4+4.5.6-3.4.5+5.6.7-4.5.6+..........+ 58.59.60-57.58.59+ 59.60.61-58.59.60
=2.3.4+ 59.60.61= 215964
A= 215964: 3= 71988
Bài 2:
A = 2.4 +4.6+ 6.8+.........+ 96.98+98.100
6A= 2.4.6+4.6.6+6.8.6+.........+96.98.6+98.100.6
= 2.4.6+ 4.6.(8-2) +6.8.(10-4)+.........+96.98.( 100-94) + 98 .100.( 102 - 96)
= 2.4.6+4.6.8-2.4.6 + 6.8.10 -4.6.8+..........+ 96.98.100-94.96.98+ 98.100.102-96.98.100
= 98 .100 .102= 999600
A= 999600:6= 166600
top scorer cop tại:tính nhanh:2/2*5+2/5*8+2/8*11+2/11*14+2/14*17? | Yahoo Hỏi & Đáp
có cách làm tại:Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath