K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Gọi d=ƯCLN(2n+1;2n^2-1)

=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d

=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d

=>n+1 chia hết cho d và 2n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau

23 tháng 9 2023

Đc gần 1 năm r nè:)

12 tháng 9 2023

Đề sai, vì khi n = 7 thì 2n + 1 = 15 và n + 2 = 9; không phải là hai số nguyên tố cùng nhau

22 tháng 6 2016

Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*

=> 2n+1 chia hết cho d, 2n+3 chia hết cho d

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)

Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.

=> Ư(2n+1; 2n+3)=1

Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.

  

 

4 tháng 12 2017

Gọi UCLN(2n+1; 2n+3) là d

Ta có:2n+1 chia hết cho d =>2n+3-2n+1 chia hết cho d =>2chia hết cho d =>d thuộc {1:2}

          2n+3 chia hết cho d 

Mà 2n+1 là số lẻ =>d Không thuộc {2}

Vậy d thuộc {1}=>2n+1 và 2n+3 là 2 số nguyên tố cùng nhau. 

\(\text{Gọi }\left(2n+1,2n+3\right)=d\)

\(\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(2n+3\right)⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)=2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

\(\text{Dễ thấy }\hept{\begin{cases}2n+1\text{không chia hết cho 2 }\\2n+3\text{không chia hết cho 2 }\end{cases}}\)

\(\Rightarrow d\ne2\Rightarrow d=1\)

\(\text{Vậy }\left(2n+1,2n+3\right)=1\)

4 tháng 12 2016

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

2 tháng 12 2017

Ta có 2n+1 =6n+3

3n+2=6n+4

gọi d là ước của 6n+3 và 6n+4

Ta có (6n+3)-(6n+4) chia hết cho d

=> 1 chia hết cho d

=> d=1

vậy 2n+1 vafn+2 là 2 số nguyên tố cùng nhau

25 tháng 3 2021

đừng để anh nóng hơi mệt đấy