Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k => a=bk,c=dk
Ta có: \(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)
\(\frac{7a+5c}{7b+5d}=\frac{7bk+5dk}{7b+5d}=\frac{k\left(7b+5d\right)}{7b+5d}=k\left(2\right)\)
Từ (1) vavf (2) => a/b=7a+5c/7b+5d
1.Ta có A= 710 +79 - 78
A= 78 .(72 +7 -1)
A=78 .55
=> A chia hết cho 11( vì có thừa số 55 chia hết cho 11)
\(125^7-25^{10}+5^{19}\)
\(=\left(5^3\right)^7-\left(5^2\right)^{10}+5^{19}\)
\(=5^{21}-5^{20}+5^{19}\)
\(=5^{19}.\left(5^2-5+1\right)\)
\(=5^{19}.21\)
\(=5^{18}.5.21\)
\(=5^{18}.105\)
Ta có: \(105⋮105\)
\(\Rightarrow5^{18}.105⋮105\)
\(\Rightarrow125^7-25^{10}+5^{19}⋮105\)
đpcm
\(125^7-25^{10}+5^{19}\)
\(=\left(5^3\right)^7-\left(5^2\right)^{10}+5^{19}\)
\(=5^{21}-5^{20}+5^{19}\)
\(=5^{19}.\left(5^2-5+1\right)\)
\(=5^{19}.21\)
\(=5^{18}.5.21=5^{18}.105⋮105\)
Vậy ......
\(2^{1995}=2^{1990}.2^5=2^{1990}.32\)
\(32:31\) dư 1 nên \(32.2^{1990}\) chia 31 dư 1
=> \(32.2^{1990}-1⋮31\)
Vậy: \(2^{1995}-1⋮31\)
NTMH kcj