K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

 \(-x^2+4x-5< 6=>-x^2+4x< 11=>-x^2+4x-11< 0\)

Ta có \(-x^2+4x-11=-\left(x^2-4x+11\right)=-\left(x^2-4x+4+7\right)=-\left(x^2-2.x.2+2^2+7\right)\)

\(=-\left[\left(x-2\right)^2+7\right]=-7-\left(x-2\right)^2< 0\) (với mọi x)

\(=>-x^2+4x-11< 0=>-x^2+4x< 11=>-x^2+4x-5< 6\) (đpcm)

8 tháng 6 2018

8x-4x2-5

= -4x2+8x-5

= -4x2+8x-4-1

= -(4x2-8x+4)-1

= -(2x-2)2-1

do -(2x-2)2 ≤ 0 ∀x

=> -(2x-2)2-1≤ -1 ∀x

=> -(2x-2)2 <0 ∀x

hay 8x-4x2-5<0 ∀x (đpcm)

8 tháng 6 2018

Ta có:

\(8x-4x^2-5=-\left(4x^2-8x+5\right)=-\left(\left(2x\right)^2-2.2x.2+2^2+1\right)=-\left(2x-2\right)^2-1\)\(-\left(2x-2\right)^2\le0\), Với mọi x nên

26 tháng 7 2021

\(A=\left(2x+5\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(8x^3-12x^2+18x+20x^2-30x+45-8x^3+2=8x^2-12x+47\)

Vậy biểu thức phụ thuộc biến x 

\(B=\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)

\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)

Vậy biểu thức ko phụ thuộc biến x 

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

Lời giải:
$A=(2x+5)(4x^2-6x+9)-2(4x^3-1)$

$=(2x+3)(4x^2-6x+9)+2(4x^2-6x+9)-(8x^3-2)$

$=(2x)^3+3^3+8x^2-12x+18-8x^3+2=48x^2-12x+47$ vẫn phụ thuộc  vào giá trị của biến. Bạn xem lại.

$B=(x+3)^3-(x+9)(x^2+27)$

$=x^3+9x^2+27x+27-(x^3+27x+9x^2+243)$

$=x^3+9x^2+27x+27-x^3-9x^2-27x-243$

$=-216$ không phụ thuộc vào giá trị của biến (đpcm)

28 tháng 10 2016

sai đề

5 tháng 8 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

23 tháng 8 2019

7 tháng 6 2018

1/ đề sai vd: 2+3=5 là số nguyên tố

2/ \(4x^2-a^2+y^2-16b^2+4xy+8ab\)

\(=\left[\left(2x\right)^2+2.2xy+y^2\right]-\left[a^2+2.4ab-\left(4b\right)^2\right]\)

\(=\left(2x+y\right)^2-\left(a-4b\right)^2\)

\(=\left(2x+y+a-4b\right)\left(2x+y-a+4b\right)\)

3/

\(M=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)

\(=\left(x^2+5x-x-5\right)\left(x^2+4x+5\right)\)

\(=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)

\(=\left(x^2+4x\right)^2-5^2\)

\(=\left(x^2+4x\right)^2-25\)

Vì \(\left(x^2+4x\right)^2\ge0\)

\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)

\(\Rightarrow M\ge-25\)

Dấu "=" xảy ra khi x = 0 hoặc x = -4

Vậy Mmin = -25 khi x = 0 hoặc x = -4

1: \(x\left(x-1\right)+\left(1+x\right)^2\)

\(=x^2-x+x^2+2x+1\)

\(=2x^2+x+1\)

Đa thức này ko phân tích được nha bạn

2: \(\left(x+1\right)^2-3\left(x+1\right)\)

\(=\left(x+1\right)\cdot\left(x+1\right)-\left(x+1\right)\cdot3\)

\(=\left(x+1\right)\left(x+1-3\right)\)

\(=\left(x+1\right)\left(x-2\right)\)

3: \(2x\cdot\left(x-2\right)-\left(x-2\right)^2\)

\(=2x\left(x-2\right)-\left(x-2\right)\cdot\left(x-2\right)\)

\(=\left(x-2\right)\left(2x-x+2\right)\)

\(=\left(x-2\right)\left(x+2\right)\)

4: \(3x\left(x-1\right)^2-\left(1-x\right)^3\)

\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)

\(=3x\left(x-1\right)^2+\left(x-1\right)^2\cdot\left(x-1\right)\)

\(=\left(x-1\right)^2\cdot\left(3x+x-1\right)\)

\(=\left(x-1\right)^2\cdot\left(4x-1\right)\)

5: \(3x\left(x+2\right)-5\left(x+2\right)^2\)

\(=\left(x+2\right)\cdot3x-\left(x+2\right)\cdot\left(5x+10\right)\)

\(=\left(x+2\right)\left(3x-5x-10\right)\)

\(=\left(-2x-10\right)\left(x+2\right)\)

\(=-2\left(x+5\right)\left(x+2\right)\)

6: \(4x\left(x-y\right)+3\left(y-x\right)^2\)

\(=4x\left(x-y\right)+3\left(x-y\right)^2\)

\(=\left(x-y\right)\cdot4x+\left(x-y\right)\left(3x-3y\right)\)

\(=\left(x-y\right)\cdot\left(4x+3x-3y\right)\)

\(=\left(x-y\right)\left(7x-3y\right)\)

4 tháng 12 2023

Cảm ơn nhiều