Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ A=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)
=>A=x2-ax-bx+ab+x2-bx-cx+bc+x2-cx-ax+ac
=>A=3x2-2ax-2bx-2cx+ab+bc+ac
=>A=3x2-2x(a+b+c)+ab+bc+ac
mà a+b+c=2x(gt)
=>A=3x2-2x.2x+ab+bc+ac
=>A=3x2-4x2+ab+bc+ac
=>A=ab+bc+ac-x2=VP
Vậy ...........................................
Với a = 1, b = 4, c = 2, d = 3 thì a + b = 5 =c + d.
Biến đổi: P(x) = (x + 1)(x + 4)( x + 2)( x + 3) – 15
= (x2 + 5x + 4)(x2 + 5x + 6) – 15
Đặt y = x2 + 5x + 4 thì P(x) trở thành
Q(y) = y(y + 2) – 1
= y2 +2y – 15
= y2 – 3y + 5y – 15
= y(y – 3) + 5( y – 3)
= (y – 3)(y + 5)
Do đó: P(x) = (x2 +5x + 1)(x2 + 5x + 9)
1 \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(Vì a+b+c=0)
b)\(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)
Theo câu a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\) nên ta suy ra được điều cần phải chứng minh là \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
2.
a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow A=1\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Sử dụng hằng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\)ta được
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(...\)
\(A=2^{32}-1\left(ĐPCM\right)\)
b) Ta có
\(\left(100^2-101^2\right)+\left(103^2-98^2\right)+\left(105^2-96^2\right)+\left(94^2-107^2\right)\)
=\(201\left(-1+5+9-13\right)=0\)
Suy ra ĐPCM
3
a) Phân tích hết ra rồi chuyển vế làm như bài toán tìm x thông thường
b) Sử dụng bất đẳng thức a^2-b^2= (a-b)(a+b)
c) Sử dụng bất đẳng thức (a-b)(a+b)=a^2-b^2 do ta dễ thấy các biểu thức liên hợp
Không hiểu chỗ nào thì có thể nhắn tin sang để mk giải thích
Bài 1:
a ) a.( b2 + c2 ) + b.( a2 + c2 ) + c.( a2 + b2 ) + 2abc
= ab2 + ac2 + a2b + bc2 + a2c + b2c + 2abc
= ( ab2 + a2b ) + ( ac2 + bc2 ) + ( a2c + 2abc + b2c )
= ab.( a + b ) + c2.( a + b ) + c.( a2 + 2ab + b2 )
= ab.( a + b ) + c2.( a + b )v + c.( a + b)2
= ( a + b ).[ ( ab + c2 + c. ( a + b ) ]
= ( a + b ).( ab + c2 + ac + bc )
= ( a + b ).[ ( ab + ac ) + ( c2 + bc) ]
= ( a + b ).[ a.( b + c ) + c.( b + c ) ]
= ( a + b ).( b + c ).( a + c )
b) ab.( a + b ) - bc.( b + c ) + ac.( a - c )
= ab.( a + b ) - bc.( b + c ) + ac.[ ( a + b ) - ( b + c ) ]
= ab.( a + b ) - bc. ( b + c ) + ac.( a + b ) - ac.( b + c )
= ab.( a + b ) + ac.( a + b ) - bc.( b + c ) - ac.( b + c )
= ( a + b ).( ab + ac ) + ( b + c ).( -bc - ac )
= ( a + b ).a.( b + c ) - ( b + c ).c.( a + b )
= ( a + b ).( b + c ).( a - c )
c) ( x2 + x )2 + 2.( x2 + x ) - 3
Đặt x2 + x = a
Khi đó đa thức trở thành:
a2 + 2a - 3
= a2 + 3a - a - 3
= a.( a + 3 ) - ( a + 3 )
= ( a - 1 ).( a - 3 )
\(\Rightarrow\) ( x2 + x - 1 ).( x2 + x - 3 )
B2
ab.( a - b ) + bc.( b - c ) + ca.( c - a ) = 0
\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.[ ( a - b ) + ( b - c ) ] = 0
\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.( a - b ) - ca.( b - c ) = 0
\(\Leftrightarrow\)ab.( a - b ) - ca.( a - b ) + bc.( b - c ) - ca.( b - c ) = 0
\(\Leftrightarrow\) ( a - b ).( ab - ca ) + ( b - c ).( bc - ca ) = 0
\(\Leftrightarrow\) ( a - b ).a.( b - c ) - ( b - c ).c.( a - b ) = 0
\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0
\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0
\(\Leftrightarrow\) a = b , b = c , a = c
\(\Rightarrow\) a = b = c
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)
\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)
\(-5x-8=0\)
\(x=-\frac{8}{5}\)
Mai mik làm mấy bài kia sau
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\) là Vế Phải
\(ab+bc+ca-x^2\)là vế trái .
Biến đổi VP ta có :
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)
\(=x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ab\)
\(=3x^2-2x\left(a+b+c\right)+\left(ab+bc+ca\right)\)
Thay \(a+b+c\)là \(2x\)ta được :
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)= VP
\(=-x^2+ab+bc+ca=VT\)
=> đpcm
-
a/ Chứng minh:
\(\left(x+a\right)\left(x+b\right)\)
\(=x^2+bx+ax+ab\)
\(=x^2+\left(ax+bx\right)+ab\)
\(=x^2+x\left(a+b\right)+ab=VP\) (đpcm)
b/ Chứng minh:
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)
\(=x^3+cx^2+ax^2+acx+bx^2+bcx+abx+abc\)
\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+acx\right)+abc\)
\(=x^3+x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)+abc=VP\) (đpcm)
a. \(VT=\left(x+a\right)\left(x+b\right)=x^2+ã+bx+ab=x^2+\left(a+b\right)x+ab=VP\)
B. \(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left[\left(x+a\right)\left(x+b\right)\right].\left(x+c\right)\)
\(=\left[\left(x^2+\left(a+b\right)x\right)+ab\right].\left(x+c\right)=x^3+x^2c+\left(a+b\right)x^2+c\left(a+b\right)x+abx+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)