\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)    là Vế Phải 

\(ab+bc+ca-x^2\)là vế trái .

Biến đổi  VP ta có :

\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)

\(=x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ab\)

\(=3x^2-2x\left(a+b+c\right)+\left(ab+bc+ca\right)\)

Thay \(a+b+c\)là \(2x\)ta được :

\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)= VP

\(=-x^2+ab+bc+ca=VT\)

=> đpcm

24 tháng 8 2017

a) Biến đổi vế trái ta có:

\(\left(x+a\right)\left(x+b\right)\)

= \(x^2+xb+xa+ab\)

= \(x^2+\left(a+b\right)x+ab=VP\)

Vậy đẳng thức đc CM

b) Biến đổi VT ta có:

\(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

= \(\left(x^2+xa+xb+ab\right)\left(x+c\right)\)

= \(x^3+x^2a+x^2b+x^2c+xab+xac+xbc+abc\)

= \(x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)= VP

Vậy đẳng thức đc CM

24 tháng 8 2017

2 cái đó chả phải HĐT ai cũng biết hết

Có 2 cách

C1:VT nhân ra

C2:phân tích đa thúc thành nhân tử ở VP

3 tháng 7 2019

a)  ta có: \(\left(x+a\right)\left(x+b\right)\)

\(=x^2+xb+xa+ab\)

\(=x^2+\left(xb+xa\right)+ab\)

\(=x^2+\left(a+b\right)x+ab\left(ĐPCM\right)\)

Câu b) làm tương tự

HOK TOT

18 tháng 6 2016

a)(x+a)(x+b)

=x(x+b)+a(x+b)

=x2+xb+ax+ab

=x2+(a+b).x+a.b

Vậy (x+a)(x+b)=x2+(a+b).x+a.b

b)(x+a)(x+b)(x+c)

=x(x+b)(x+c)+a(x+b)(x+c)

=(x2+xb)(x+c)+(ax+ab)(x+c)

=x2(x+c)+xb(x+c)+ax(x+c)+ab(x+c)

=x3+x2.c+x2.b+xbc+ax2+axc+abx+abc

=x3+(a+b+c).x2+(ab+bc+ca).x+abc

Vậy (x+a)(x+b)(x+c)=x3+(a+b+c).x2+(ab+bc+ca).x+abc

c)(a+b+c)(a2+b2+c2-ab-bc-ca)

=a(a2+b2+c2-ab-bc-ca)+b(a2+b2+c2-ab-bc-ca)+c(a2+b2+c2-ab-bc-ca)

=a3+ab2+ac2-a2.b-abc-a2.c+ba2+b3+bc2-ab2-b2.c-bca+ca2+cb2+c3-cab-bc2-c2.a

=a3+b3+c3 -abc-bca-cab

=a3+b3+c3 -3abc

Vậy (a+b+c)(a2+b2+c2-ab-bc-ca)=a3+b3+c3 -3abc

19 tháng 9 2021

ngu như con hà cày

27 tháng 5 2017

cố gắng là làm được

27 tháng 5 2017

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)

18 tháng 4 2018

x x+1 1-x tổng -1 1 0 0 -x-1 x+1 x+1 -1+x -1+x 1-x -2 2x 2 (1)

(1) với -1 ≤ x <1

2x=2 ⇔ x=1 (ktm)

=> pt vô nghiệm

18 tháng 4 2018

Câu a :

Theo BĐT trên ta có :

\(\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=2\)

Đẳng thức xảy ra khi \(x=0\)

14 tháng 8 2018

d) \(\left(4x^2-2x+1\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left[\left(2x\right)^2-2x.1+1^2\right]\)

\(=\left(2x\right)^3+1\)

\(=8x^3+1\)

14 tháng 8 2018

a) \(\left(x+2y\right)^3=x^3+3.x^2.2y+3.x.\left(2y\right)^2+\left(2y\right)^3\)

\(=x^3+6x^2y+12xy^2+8y^3\)

b) \(\left(2x-y\right)^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\)

\(=8x^3-12x^2y+6xy^2-y^3\)

c) \(\left(x^2+x+1\right).\left(x-1\right)=x^3-x^2+x^2-x+x-1\)

\(=\left(x^3-1\right)\)

#Câu này mình làm chi tiết 1 tí :) Bạn có thể tự làm gọn cho lẹ luôn nha :)

d) \(\left(4x^2-2x+1\right)\left(2x+1\right)=\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=\left(2x+1\right)\left(\left(2x\right)^2-2x.1+1^2\right)\)

\(=\left(2x\right)^3+1\)

\(=8x^3+1\)

14 tháng 8 2018

a)(x+2y)(x2-2xy+y2)

b)(2x-y)(4x2+2xy+y2)

c)(x-1)3

d)(2x+1)3