Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a :
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Câu b :
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+26=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\rightarrow x^3-2x^2+4x+2x^2-4x^2+8-x^3-2x=15\)
\(\rightarrow2x+8=15\)
\(\rightarrow2x=15-8=7\)
\(\Rightarrow x=7:2=3,5\)
Do ko có t/gian nên ko kịp lm câu b
\(x^2+\dfrac{1}{2}x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
a. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+7-1-2.2=8\ne0\)
\(\Rightarrow x_0=2\) không phải là nghiệm của pt
b. Thay \(x_0=-2\) vào phương trình, ta được:
\(\left(-2\right)^2-3.\left(-2\right)-10=0\)
\(\Rightarrow x_0=-2\) là nghiệm của pt
c. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+4-2.2+2=0\)
\(\Rightarrow x_0=2\) là nghiệm của pt
d. Thay \(x_0=-1\) vào phương trình, ta được:
\(\left(-1+1\right)\left(-1-2\right)\left(-1-5\right)=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
e. Thay \(x_0=-1\) vào phương trình, ta được:
\(2.\left(-1\right)^2+3.\left(-1\right)+1=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
f. Thay \(x_0=5\) vào phương trình, ta được:
\(4.5^2-3.5-2.5+1=76\ne0\)
\(\Rightarrow x_0=5\) không là nghiệm của pt
DO khong co dieu kien cua x nen ban hay lay x la mot so tu nhien bat ki
giả sử lấy x=1 thì ta có thể dễ dàng tính được tổng bằng 4^5=1024
\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x\)
\(\Leftrightarrow3x^2-6x+12=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\left(VLý.do.\left(x-1\right)^2+3\ge3>0\right)\)
Vậy \(S=\varnothing\)