K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

Ta có 3 trường hợp:

+ n chia hết cho 3

+ n chia 3 dư 1

+ n chia 3 dư 2

~ Với trường hợp n chia hết cho 3, ta có:

n^2 chia hết cho 3

n chia hết cho 3

2012 không chia hết cho 3

=> n^2 + n +2012 không chia hết cho 3 (1)

~ Với trường hợp n chia 3 dư 1, ta có:

n^2 chia 3 dư 1

n chia 3 dư 1

2012 chia 3 dư 2

=> n^2+n+2012 không chia hết cho 3 (2)

~ Với trường hợp n chia 3 dư 2, ta có:

n^2 chia 3 dư 1

n chia 3 dư 2

2012 chia 3 dư 2

=>  n^2+n+2012 không chia hết cho 3 (3)

Từ (1); (2); (3) ta đc điều cần chứng minh

 

16 tháng 7 2015

Nếu n=3k(k thuộc Z)

thì BT trên=(3k)2+3k+2012=(3k)(3k+1)+2012 ko chia hết cho 3

Nếu n=3k+1(k thuộc Z)

thì BT trên=(3k+1)2+(3k+1)+2012=(3k+1)(3k+2)+2012 ko chia hết cho 3

Nếu n=3k+2(k thuộc Z)

thì BT trên=(3k+2)2+(3k+2)+(3*670+2)=(3k+2)(3k+3)+2010+2 không chia hết cho 3

Vậy với mọi n nguyên thì n2+n+2012 ko chia hết cho 3

11 tháng 10 2015

Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2

Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2

Vậy (n+4)(n+5) chia hết cho 2

 

11 tháng 12 2016

Câu a 

Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2

Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai

Vậy (n+4)(n+5) chia hết cho 2

Câu b

Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp

Gọi ƯCLN(n+2012; n+2013)=d

Vì ƯCLN(n+2012;n+2013)=d 

=> n+2012 chia hết cho d, n+2013 chia hết cho d

Mà n+2013-n+2012=1=> d=1

Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau

25 tháng 10 2017

a) A = 2n +1 => A là số lẻ \(\Rightarrow⋮̸\)( không chia hết ) 2

b) A có thể chia hết cho 5 , A có thể không chia hết cho 5

25 tháng 10 2017

Ghi giải ra luôn bạn!

28 tháng 11 2017

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N

28 tháng 11 2017

Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5n2+3n+5⋮⋮121.

=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮1214(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121.

Mặt khác, n2+3n+5n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11

mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮ 121

=> (2n+3)^2+11  ko chia hết chia het cho 121

2 tháng 4 2023

n2+5n+5=(n2+5n)+5

   n2+5n=n.(n+5)

    xét hiệu: (n+5)-n

         mà 5 chia hết cho 5 

=> (n+5)-n chia hết cho 5

hai số (n+5) và n chia hết cho 5 hoặc (n+5) và n chia cho 5 cùng số dư 

th1:hai số (n+5) và n chia hết cho 5 

=> n+5 chia hết cho 5 và n chia hết cho 5

=> n.(n+5) chia hết cho 5 

mà 5 không chia hết cho 25 

=> n2 +5n+5 không chia hết cho 25

th2: n+5 và n  chia cho 5 cùng số dư 

=> n+5 không chia hết cho 5 và n không chia hết cho 5 

=> n.(n+5) không chia hết cho 25

mà 5 chia hết cho 5 

=> n2 + 5n + n  không chia hết cho 25 

vậy với n thuộc N thì n2+5n+5 không chia hết cho 25 

chú ý: không chia hết viết bằng kí hiệu