Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dưới dạng phân số ta có
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)
<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (vì a+b+c=1) (đpcm)
Cách khác dùng AM-GM
Áp dụng bđt AM-GM cho 3 số không âm ta được:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)
Tiếp tục áp dụng bđt AM-GM cho 3 số không âm ta được:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\dfrac{3}{\sqrt[3]{abc}}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)(đpcm)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Ta có \(1=a+b+c\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{abc}\)
Theo đề bài ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}\)
\(\ge\frac{3\sqrt[3]{a^2b^2c^2}}{abc}=\frac{3}{\sqrt[3]{abc}}\ge9\)
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
phần a nhé
1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a) do a+b+c=1
áp dụng bdt cosi cho các so dương a/b,b/a,a/c,c/a,b/c,c/b
a/b+b/a >=2
b/c+c/b>=2
a/c+c/a>=2
cộng hết vào suy ra 1/a+1/b+1/c >=9
a.
Xét hiệu:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-4\)
\(=1+\dfrac{a}{b}+\dfrac{b}{a}+1-4\)
\(=\dfrac{a}{b}+\dfrac{b}{a}-2\)
\(=\dfrac{a^2+b^2-2ab}{ab}\)
\(=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)
Suy ra:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
b.
Đặt:
\(A=\)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)
\(=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+3\) (1)
Áp dụng BĐT Cauchy cho 2 số không âm, ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\) (2)
\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (3)
\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2\) (4)
Từ (1)(2)(3)(4) cộng vế theo vế, ta được:
\(A\ge3+2+2+2=9\)
=> BĐT luôn đúng
=> \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
\(a+\dfrac{1}{a}=\dfrac{a^2+1}{a}\ge\dfrac{2a}{a}=2;b+\dfrac{4}{b}=\dfrac{b^2+4}{b}\ge\dfrac{4b}{b}=4;c+\dfrac{9}{c}=\dfrac{c^2+9}{c}\ge\dfrac{6c}{c}=6\)
\(a+b+c+\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}=\left(a+\dfrac{1}{a}\right)+\left(b+\dfrac{4}{b}\right)+\left(c+\dfrac{9}{c}\right)\ge2+4+6=12\)
xét vế trái ta có (nhân vào )
a/a + a/b + a/c + b/a + b/b + b/c + c/a + c/b +c/c >= 9
<=> 3 + ( a/b +b/a ) + (b/c + c/b )+ (c/a +a/c) >=9
áp dụng bất đẳng thức phụ : a/b + b/a >=2 , b/c + c/b >= 2 , a/c +c/a >=2 ta được
3 +2 +2+2 >=9
=> đpcm
ta CM bất đẳng thức phụ a/b +b/a >=2 nhé !
vì a/b +b/a >=2 nên ta xét hiệu:
a/b + b/c - 2 >= 0
ta quy đồng mẫu các phân số :
<=> a2 /ab + b2/ab - 2ab/ab >= 0
<=> (a2 + b2 - 2ab) / ab = (a-b)2 /ab >=0
dấu = xảy ra khi a-b =0 <=> a=b
nên a/b + b/a - 2 >=0
<=> a/b + b/a >= 2 dấu = xảy ra khi a=b