Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: ΔAHC vuông tại H
mà HF là đường trung tuyến
nên HF=AF
mà AF=ME
nên HF=ME
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: FE là đường trung bình
=>FE//BC
hay FE//MH
Xét tứ giác EFMH có FE//MH
nên EFMH là hình thang
mà FH=ME
nên EFMH là hình thang cân
d: Xét tứ giác MNAB có
MN//AB
MN=AB
Do đó: MNAB là hình bình hành
Suy ra: MA cắt NB tại trung điểm của mỗi đường(1)
Ta có: AEMF là hình chữ nhật
nên MA cắt EF tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AM,BN,FE đồng quy
a: DB/DC=AB/AC=8/6=4/3
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
Câu 4(Son Cho A ABC vuông ti A, đường phân các ID DE HC (E in BC ) i đừng thẳng Dễ cắt đường thẳng AB tại E. a) Chung minh BD LCF b) Chứng minh Ff= FCDw i triangle FBF- triangle FDC. c) Tính tỉ số diện tích của SHIID vì AABC bởi AB = 9cmc AC = 12cm
b ơi b có kiến thức cơ bản không để mình chỉ hướng dẫn b làm th chứ làm hết dài lắm
(Hình bạn tự vẽ nha)
a ,
Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .
b ,
Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB
Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .
-> AC là đường trung trực của MN
->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .
-> Tứ giác MANC là hình thoi.
c ,
Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)
Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .
-> AE = EB (2)
Vì tứ giác MANC là hình thoi nên AF=FC (3)
Từ (1),(2) và (3) suy ra BE = FC (4)
Từ (1) và (4) suy ra : AE + BE = AF + FC
hay AB = AC
-> Tam giác ABC là tam giác vuông cân .
Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .
A B C M N I K
a/ Ta có
\(AB\perp AC\left(gt\right)\Rightarrow AM\perp AC;IN\perp AC\left(gt\right)\) => AM//IN
\(AC\perp AB\left(gt\right)\Rightarrow AN\perp AB;IM\perp AB\left(gt\right)\) => AN//IM
=> AMIN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Mà \(\widehat{A}=90^o\)
=> AMIN là HCN
b/
Ta co
AM//IN (cmt) =>AB//IK
BK//AI (gt)
=> ABKI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => BK=AI (cạnh đối hbh)
c/
Xét tg vuông ABC có
\(AI^2=BI.CI\) (Trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow3AI^2=3.BI.CI\) (1)
Xét tg vuông MBI có
\(BM^2=BI^2-MI^2\) (2) (Pitago)
Xét tg vuông NCI có
\(CN^2=CI^2-NI^2\) (3) (Pitago)
Cộng 2 vế của (1) (2) (3) ta có
\(3AI^2+BM^2+CN^2=BI^2+CI^2+3.BI.CI-\left(MI^2+NI^2\right)=\)
\(=\left(BI+CI\right)^2+BI.CI-\left(MI^2+NI^2\right)=\)
\(=BC^2+BI.CI-\left(MI^2+NI^2\right)\) (4)
Ta có
\(BI.CI=AI^2\left(cmt\right)\) (5)
Xét tg vuông AIN có
\(AI^2=AN^2+NI^2\)
Do AMIN là HCN (cnt) => AN=MI
\(\Rightarrow AI^2=MI^2+NI^2\) (6)
Thay (5) và (6) vào (4) ta có
\(3AI^2+BM^2+CN^2=BC^2+AI^2-AI^2\)
\(\Rightarrow BC^2=3AI^2+BM^2+CN^2\left(dpcm\right)\)
a: Xét ΔIAM vuông tại M và ΔIAQ vuông tại Q có
AI chung
\(\widehat{MAI}=\widehat{QAI}\)
Do đó: ΔIAM=ΔIAQ
b: ta có: ΔIAM=ΔIAQ
=>IM=IQ
Xét ΔBMI vuông tại M và ΔBNI vuông tại N có
BI chung
\(\widehat{MBI}=\widehat{NBI}\)
Do đó: ΔBMI=ΔBNI
=>IM=IN
mà IM=IQ
nên IM=IN=IQ