Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp mình câu này đi, mình cần gấp lắm, ai đúng mình k cho.
\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1012^2}\)
\(S=1+\left(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{1024144}\right)\)
\(S=1+\left(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{2012\cdot2012}\right)\)
\(S=1+\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2012}\right)\)
\(S=1+\left(\frac{1}{2}-\frac{1}{2012}\right)\)
\(S=1+\frac{1005}{2012}\)
\(S=\frac{3017}{2012}\)
a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)
Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)
Từ (1) và (2) => 1 < S < 1,5
Vậy...
b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)
\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)
Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)
Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)
Vậy...
các bạn xem mình làm có đúng không ??
Tổng S gồm 15 phân số từ \(\frac{1}{2}\) đến \(\frac{1}{16}\) . Mẫu chung của cá phân số là :
BCNN( 2 ; 3 ; 4 ; .... ; 15 ; 16 ) = 24.32.5.7.11.13 = 5.7.9.11.13.16 .
Phân số \(\frac{1}{16}\) sau khi quy đồng mẫu là : \(\frac{1}{16}=\frac{5.7.9.11.13}{5.7.9.11.13.16}\) là một phân số có tử lẻ và mẫu chẵn
Tử của 14 phân số còn lại sau khi quy đồng là số chẵn . Vậy tổng của 15 phân số đã cho là 1 phân số
có tử lẻ , mẫu chẵn , nên không là số tự nhiên
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+...+\frac{3}{14}\)
Đặt \(B=\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
\(S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}< \frac{20}{10}=2\)
\(\Rightarrow1< S< 2\)
Vậy S không phải STN